Segui
Julia E Vogt
Titolo
Citata da
Citata da
Anno
Interferon-induced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C
MT Dill, FHT Duong, JE Vogt, S Bibert, PY Bochud, L Terracciano, ...
Gastroenterology 140 (3), 1021-1031. e10, 2011
2952011
Interpretability and explainability: A machine learning zoo mini-tour
R Marcinkevičs, JE Vogt
arXiv preprint arXiv:2012.01805, 2020
1872020
Generalized Multimodal ELBO
TM Sutter, I Daunhawer, JE Vogt
The International Conference on Learning Representations (ICLR), 2021
1022021
Introduction to Machine Learning in Digital Healthcare Epidemiology
MD Jan A. Roth, MD Manuel Battegay, MD Fabrice Juchler, ...
Infection Control & Hospital Epidemiology, 2018
1002018
Interpretable and explainable machine learning: a methods‐centric overview with concrete examples
R Marcinkevičs, JE Vogt
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13 (3 …, 2023
932023
Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
T Sutter, I Daunhawer, JE Vogt
Neural Information Processing Systems (NeurIPS) 2020, 2020
862020
Gene expression analysis of biopsy samples reveals critical limitations of transcriptome‐based molecular classifications of hepatocellular carcinoma
Z Makowska, T Boldanova, D Adametz, L Quagliata, JE Vogt, MT Dill, ...
The Journal of Pathology: Clinical Research 2 (2), 80-92, 2016
782016
Re-focusing explainability in medicine
L Arbelaez Ossa, G Starke, G Lorenzini, JE Vogt, DM Shaw, BS Elger
Digital health 8, 20552076221074488, 2022
762022
Interpretable Models for Granger Causality Using Self-explaining Neural Networks
R Marcinkevičs, JE Vogt
The International Conference on Learning Representations (ICLR), 2021
722021
Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation
MT Dill, Z Makowska, G Trincucci, AJ Gruber, JE Vogt, M Filipowicz, ...
The Journal of clinical investigation 124 (4), 1568-1581, 2014
612014
Pharmacometrics and machine learning partner to advance clinical data analysis
G Koch, M Pfister, I Daunhawer, M Wilbaux, S Wellmann, JE Vogt
Clinical Pharmacology & Therapeutics 107 (4), 926-933, 2020
602020
Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis
R Marcinkevics, P Reis Wolfertstetter, S Wellmann, C Knorr, JE Vogt
Frontiers in Pediatrics 9, 360, 2021
552021
Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning
I Daunhawer, S Kasser, G Koch, L Sieber, H Cakal, J Tütsch, M Pfister, ...
Pediatric research 86 (1), 122-127, 2019
552019
A Deep Variational Approach to Clustering Survival Data
L Manduchi, R Marcinkevics, MC Massi, V Gotta, T Müller, F Vasella, ...
The Eleventh International Conference on Learning Representations (ICLR) 2022, 2022
482022
On the identifiability and estimation of causal location-scale noise models
A Immer, C Schultheiss, JE Vogt, B Schölkopf, P Bühlmann, A Marx
International Conference on Machine Learning (ICML) 2023, 14316-14332, 2023
412023
A complete analysis of the l_1, p group-lasso
J Vogt, V Roth
International Conference of Machine Learning (ICML), 2012
412012
On the limitations of multimodal VAEs
I Daunhawer, TM Sutter, K Chin-Cheong, E Palumbo, JE Vogt
The Eleventh International Conference on Learning Representations (ICLR) 2022, 2022
392022
Generation of Heterogeneous Synthetic Electronic Health Records using GANs
K Chin-Cheong, T Sutter, JE Vogt
Machine Learning for Health Workshop, NeurIPS 2019, Vancouver, Canada, 2019
392019
Beyond the randomized clinical trial: innovative data science to close the pediatric evidence gap
SC Goulooze, LB Zwep, JE Vogt, EHJ Krekels, T Hankemeier, ...
Clinical Pharmacology & Therapeutics 107 (4), 786-795, 2020
382020
Identifiability results for multimodal contrastive learning
I Daunhawer, A Bizeul, E Palumbo, A Marx, JE Vogt
International Conference on Learning Representation (ICLR), 2023
352023
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20