Segui
Fanny Jourdan
Fanny Jourdan
Researcher at IRT Saint Exupéry
Email verificata su irt-saintexupery.com - Home page
Titolo
Citata da
Citata da
Anno
How Optimal Transport Can Tackle Gender Biases in Multi-Class Neural Network Classifiers for Job Recommendations
F Jourdan, TT Kaninku, N Asher, JM Loubes, L Risser
Algorithms 16 (3), 174, 2023
122023
COCKATIEL: COntinuous Concept ranKed ATtribution with Interpretable ELements for explaining neural net classifiers on NLP tasks
F Jourdan, A Picard, T Fel, L Risser, JM Loubes, N Asher
Findings of the Association for Computational Linguistics: ACL 2023, 5120–5136, 2023
102023
Are fairness metric scores enough to assess discrimination biases in machine learning?
F Jourdan, L Risser, JM Loubes, N Asher
Third Workshop on Trustworthy Natural Language Processing: ACL 2023, 2023
82023
Taco: Targeted concept erasure prevents non-linear classifiers from detecting protected attributes
F Jourdan, L Béthune, A Picard, L Risser, N Asher
arXiv preprint arXiv:2312.06499, 2023
12023
TaCo: Targeted Concept Removal in Output Embeddings for NLP via Information Theory and Explainability
F Jourdan, L Béthune, A Picard, L Risser, N Asher
arXiv preprint arXiv:2312.06499, 2023
12023
ConSim: Measuring Concept-Based Explanations' Effectiveness with Automated Simulatability
A Poché, A Jacovi, AM Picard, V Boutin, F Jourdan
arXiv preprint arXiv:2501.05855, 2025
2025
Advancing fairness in natural language processing: from traditional methods to explainability
F Jourdan
Université de Toulouse, 2024
2024
Breaking Bias: How Optimal Transport Can Help to Tackle Gender Biases in NLP Based Job Recommendation Systems?
F Jourdan, TT Kaninku, N Asher, JM Loubes, L Risser
EWAF, 2023
2023
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–8