Segui
Decha Moungsri
Decha Moungsri
Tokyo Institute of Technology
Email verificata su google.com
Titolo
Citata da
Citata da
Anno
Duration prediction using multiple Gaussian process experts for GPR-based speech synthesis
D Moungsri, T Koriyama, T Kobayashi
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
102017
HMM-based Thai speech synthesis using unsupervised stress context labeling
D Moungsri, T Koriyama, T Kobayashi
Signal and Information Processing Association Annual Summit and Conference …, 2014
102014
Unsupervised Stress Information Labeling Using Gaussian Process Latent Variable Model for Statistical Speech Synthesis.
D Moungsri, T Koriyama, T Kobayashi
Interspeech, 1517-1521, 2016
82016
Duration prediction using multi-level model for GPR-based speech synthesis.
D Moungsri, T Koriyama, T Kobayashi
INTERSPEECH, 1591-1595, 2015
72015
Tone modeling using stress information for HMM-based Thai speech synthesis
D Moungsri, T Koriyama, T Nose, T Kobayashi
Proc. Speech Prosody 7, 1057-1061, 2014
52014
Tone modeling using Gaussian process latent variable model for statistical speech synthesis
D Moungsri, T Koriyama, T Kobayashi
Proc. Speech Prosody 8, 1014-1018, 2016
32016
GPR-based Thai speech synthesis using multi-level duration prediction
D Moungsri, T Koriyama, T Kobayashi
Speech Communication 99, 114-123, 2018
22018
Prosody Modeling Based on Gaussian Process Regression for Thai Speech Synthesis
D Moungsri
東京工業大学, 2018
2018
Enhanced F0 generation for GPR-based speech synthesis considering syllable-based prosodic features
D Moungsri, T Koriyama, T Kobayashi
2017 Asia-Pacific Signal and Information Processing Association Annual …, 2017
2017
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–9