Segui
Alexander Nikulin
Alexander Nikulin
dunnolab.ai
Email verificata su phystech.edu - Home page
Titolo
Citata da
Citata da
Anno
CORL: Research-oriented deep offline reinforcement learning library
D Tarasov, A Nikulin, D Akimov, V Kurenkov, S Kolesnikov
Advances in Neural Information Processing Systems 36, 2024
822024
Revisiting the minimalist approach to offline reinforcement learning
D Tarasov, V Kurenkov, A Nikulin, S Kolesnikov
Advances in Neural Information Processing Systems 36, 2024
282024
Minerl diamond 2021 competition: Overview, results, and lessons learned
A Kanervisto, S Milani, K Ramanauskas, N Topin, Z Lin, J Li, J Shi, D Ye, ...
NeurIPS 2021 Competitions and Demonstrations Track, 13-28, 2022
282022
Anti-exploration by random network distillation
A Nikulin, V Kurenkov, D Tarasov, S Kolesnikov
International Conference on Machine Learning, 26228-26244, 2023
272023
Q-ensemble for offline rl: Don't scale the ensemble, scale the batch size
A Nikulin, V Kurenkov, D Tarasov, D Akimov, S Kolesnikov
arXiv preprint arXiv:2211.11092, 2022
192022
XLand-minigrid: Scalable meta-reinforcement learning environments in JAX
A Nikulin, V Kurenkov, I Zisman, A Agarkov, V Sinii, S Kolesnikov
arXiv preprint arXiv:2312.12044, 2023
162023
Let offline rl flow: Training conservative agents in the latent space of normalizing flows
D Akimov, V Kurenkov, A Nikulin, D Tarasov, S Kolesnikov
arXiv preprint arXiv:2211.11096, 2022
122022
In-context reinforcement learning for variable action spaces
V Sinii, A Nikulin, V Kurenkov, I Zisman, S Kolesnikov
arXiv preprint arXiv:2312.13327, 2023
102023
Machine learning models for photonic crystals band diagram prediction and gap optimisation
A Nikulin, I Zisman, M Eich, AY Petrov, A Itin
Photonics and Nanostructures-Fundamentals and Applications 52, 101076, 2022
82022
Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning
S Huang, Q Gallouédec, F Felten, A Raffin, RFJ Dossa, Y Zhao, ...
arXiv preprint arXiv:2402.03046, 2024
72024
Emergence of In-Context Reinforcement Learning from Noise Distillation
I Zisman, V Kurenkov, A Nikulin, V Sinii, S Kolesnikov
arXiv preprint arXiv:2312.12275, 2023
52023
Katakomba: tools and benchmarks for data-driven NetHack
V Kurenkov, A Nikulin, D Tarasov, S Kolesnikov
Advances in Neural Information Processing Systems 36, 2024
22024
XLand-100B: A Large-Scale Multi-Task Dataset for In-Context Reinforcement Learning
A Nikulin, I Zisman, A Zemtsov, V Sinii, V Kurenkov, S Kolesnikov
arXiv preprint arXiv:2406.08973, 2024
12024
Latent Action Learning Requires Supervision in the Presence of Distractors
A Nikulin, I Zisman, D Tarasov, N Lyubaykin, A Polubarov, I Kiselev, ...
arXiv preprint arXiv:2502.00379, 2025
2025
Vintix: Action Model via In-Context Reinforcement Learning
A Polubarov, N Lyubaykin, A Derevyagin, I Zisman, D Tarasov, A Nikulin, ...
arXiv preprint arXiv:2501.19400, 2025
2025
N-Gram Induction Heads for In-Context RL: Improving Stability and Reducing Data Needs
I Zisman, A Nikulin, A Polubarov, N Lyubaykin, V Kurenkov
arXiv preprint arXiv:2411.01958, 2024
2024
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–16