A 3D distinct lattice spring model for elasticity and dynamic failure GF Zhao, J Fang, J Zhao International Journal for Numerical and Analytical Methods in Geomechanics …, 2011 | 356 | 2011 |
A numerical study of the SPH method for simulating transient viscoelastic free surface flows J Fang, RG Owens, L Tacher, A Parriaux Journal of non-newtonian fluid mechanics 139 (1-2), 68-84, 2006 | 218 | 2006 |
Improved SPH methods for simulating free surface flows of viscous fluids J Fang, A Parriaux, M Rentschler, C Ancey Applied numerical mathematics 59 (2), 251-271, 2009 | 199 | 2009 |
Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface MG Giometto, A Christen, C Meneveau, J Fang, M Krafczyk, MB Parlange Boundary-layer meteorology 160, 425-452, 2016 | 186 | 2016 |
A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows J Fang, M Kröger, HC Öttinger Journal of Rheology 44 (6), 1293-1317, 2000 | 132 | 2000 |
Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer J Fang, F Porté-Agel Boundary-Layer Meteorology 155, 397-416, 2015 | 103 | 2015 |
Flow over hills: a large-eddy simulation of the Bolund case M Diebold, C Higgins, J Fang, A Bechmann, MB Parlange Boundary-layer meteorology 148, 177-194, 2013 | 103 | 2013 |
A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow M Moyers-Gonzalez, RG Owens, J Fang Journal of Fluid Mechanics 617, 327-354, 2008 | 98 | 2008 |
Numerical weather prediction and artificial neural network coupling for wind energy forecast L Donadio, J Fang, F Porté-Agel Energies 14 (2), 338, 2021 | 72 | 2021 |
A non-homogeneous constitutive model for human blood: Part III. Oscillatory flow MA Moyers-Gonzalez, RG Owens, J Fang Journal of Non-Newtonian Fluid Mechanics 155 (3), 161-173, 2008 | 64 | 2008 |
A regularized Lagrangian finite point method for the simulation of incompressible viscous flows J Fang, A Parriaux Journal of Computational physics 227 (20), 8894-8908, 2008 | 63 | 2008 |
Numerical simulations of pulsatile blood flow using a new constitutive model J Fang, RG Owens Biorheology 43 (5), 637-660, 2006 | 57 | 2006 |
Fokker–Planck simulations of fast flows of melts and concentrated polymer solutions in complex geometries A Lozinski, C Chauvière, J Fang, RG Owens Journal of Rheology 47 (2), 535-561, 2003 | 52 | 2003 |
Towards oscillation-free implementation of the immersed boundary method with spectral-like methods J Fang, M Diebold, C Higgins, MB Parlange Journal of Computational Physics 230 (22), 8179-8191, 2011 | 45 | 2011 |
Parallelization of the distinct lattice spring model GF Zhao, J Fang, L Sun, J Zhao International Journal for Numerical and Analytical Methods in Geomechanics …, 2013 | 38 | 2013 |
Wind energy prediction in highly complex terrain by computational fluid dynamics D Tabas, J Fang, F Porté-Agel Energies 12 (7), 1311, 2019 | 33 | 2019 |
Direct numerical simulation of turbulent slope flows up to Grashof number MG Giometto, GG Katul, J Fang, MB Parlange Journal of Fluid Mechanics 829, 589-620, 2017 | 31 | 2017 |
A coupled distinct lattice spring model for rock failure under dynamic loads GF Zhao, N Khalili, J Fang, J Zhao Computers and Geotechnics 42, 1-20, 2012 | 31 | 2012 |
An efficient and accurate algorithm for generating spatially‐correlated random fields J Fang, L Tacher Communications in numerical methods in engineering 19 (10), 801-808, 2003 | 30 | 2003 |
A Fokker–Planck-based numerical method for modelling non-homogeneous flows of dilute polymeric solutions A Lozinski, RG Owens, J Fang Journal of non-newtonian fluid mechanics 122 (1-3), 273-286, 2004 | 28 | 2004 |