Lora-fa: Memory-efficient low-rank adaptation for large language models fine-tuning L Zhang, L Zhang, S Shi, X Chu, B Li arXiv preprint arXiv:2308.03303, 2023 | 99 | 2023 |
Grace: A general graph convolution framework for attributed graph clustering B Fanseu Kamhoua, L Zhang, K Ma, J Cheng, B Li, B Han ACM Transactions on Knowledge Discovery from Data 17 (3), 1-31, 2023 | 19 | 2023 |
Dear: Accelerating distributed deep learning with fine-grained all-reduce pipelining L Zhang, S Shi, X Chu, W Wang, B Li, C Liu 2023 IEEE 43rd International Conference on Distributed Computing Systems …, 2023 | 16 | 2023 |
Eva: Practical second-order optimization with kronecker-vectorized approximation L Zhang, S Shi, B Li The Eleventh International Conference on Learning Representations, 2023 | 15 | 2023 |
Hypergraph convolution based attributed hypergraph clustering B Fanseu Kamhoua, L Zhang, K Ma, J Cheng, B Li, B Han Proceedings of the 30th ACM International Conference on Information …, 2021 | 14 | 2021 |
Evaluation and optimization of gradient compression for distributed deep learning L Zhang, L Zhang, S Shi, X Chu, B Li 2023 IEEE 43rd International Conference on Distributed Computing Systems …, 2023 | 12 | 2023 |
Accelerating distributed K-FAC with smart parallelism of computing and communication tasks S Shi, L Zhang, B Li 2021 IEEE 41st International Conference on Distributed Computing Systems …, 2021 | 11 | 2021 |
Online cooperative resource allocation at the edge: A privacy-preserving approach Y Li, HC Ng, L Zhang, B Li 2020 IEEE 28th International Conference on Network Protocols (ICNP), 1-11, 2020 | 11 | 2020 |
Scalable k-fac training for deep neural networks with distributed preconditioning L Zhang, S Shi, W Wang, B Li IEEE Transactions on Cloud Computing 11 (3), 2365-2378, 2022 | 10 | 2022 |
Xl3m: A training-free framework for llm length extension based on segment-wise inference S Wang, Y Bai, L Zhang, P Zhou, S Zhao, G Zhang, S Wang, R Chen, ... arXiv preprint arXiv:2405.17755, 2024 | 6 | 2024 |
Exact shape correspondence via 2d graph convolution B Fanseu Kamhoua, L Zhang, Y Chen, H Yang, MA Kaili, B Han, B Li, ... Advances in Neural Information Processing Systems 35, 18072-18087, 2022 | 6 | 2022 |
Decoupling the all-reduce primitive for accelerating distributed deep learning L Zhang, S Shi, X Chu, W Wang, B Li, C Liu arXiv preprint arXiv:2302.12445, 2023 | 4 | 2023 |
Accelerating distributed K-FAC with efficient collective communication and scheduling L Zhang, S Shi, B Li IEEE INFOCOM 2023-IEEE Conference on Computer Communications, 1-10, 2023 | 3 | 2023 |
Eva: A General Vectorized Approximation Framework for Second-order Optimization L Zhang, S Shi, B Li arXiv preprint arXiv:2308.02123, 2023 | 1 | 2023 |
BigMac: A Communication-Efficient Mixture-of-Experts Model Structure for Fast Training and Inference Z Jin, S Wang, J Zhu, H Zhan, Y Bai, L Zhang, Z Ming, C Li arXiv preprint arXiv:2502.16927, 2025 | | 2025 |
FSMoE: A Flexible and Scalable Training System for Sparse Mixture-of-Experts Models X Pan, W Lin, L Zhang, S Shi, Z Tang, R Wang, B Li, X Chu arXiv preprint arXiv:2501.10714, 2025 | | 2025 |