עקוב אחר
Minkai Xu
Minkai Xu
כתובת אימייל מאומתת בדומיין cs.stanford.edu - דף הבית
כותרת
צוטט על ידי
צוטט על ידי
שנה
GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation
M Xu, L Yu, Y Song, C Shi, S Ermon, J Tang
ICLR 2022, 2022
5792022
GraphAF: a flow-based autoregressive model for molecular graph generation
M Xu*, C Shi*, Z Zhu, W Zhang, M Zhang, J Tang
The 8th International Conference on Learning Representations (ICLR 2020), 2020
513*2020
Learning gradient fields for molecular conformation generation
C Shi, S Luo, M Xu, J Tang
International conference on machine learning, 9558-9568, 2021
2382021
A graph to graphs framework for retrosynthesis prediction
C Shi, M Xu, H Guo, M Zhang, J Tang
International conference on machine learning, 8818-8827, 2020
1832020
Geometric latent diffusion models for 3d molecule generation
M Xu, AS Powers, RO Dror, S Ermon, J Leskovec
International Conference on Machine Learning, 38592-38610, 2023
1492023
Learning Neural Generative Dynamics for Molecular Conformation Generation
M Xu, S Luo, Y Bengio, J Peng, J Tang
The 9th International Conference on Learning Representations (ICLR 2021), 2020
1432020
Artificial intelligence for science in quantum, atomistic, and continuum systems
X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y Xie, M Liu, Y Lin, Z Xu, K Yan, ...
arXiv preprint arXiv:2307.08423, 2023
1272023
Predicting molecular conformation via dynamic graph score matching
S Luo, C Shi, M Xu, J Tang
Advances in neural information processing systems 34, 19784-19795, 2021
1132021
An end-to-end framework for molecular conformation generation via bilevel programming
M Xu, W Wang, S Luo, C Shi, Y Bengio, R Gomez-Bombarelli, J Tang
International conference on machine learning, 11537-11547, 2021
1022021
Mastering text-to-image diffusion: Recaptioning, planning, and generating with multimodal llms
L Yang, Z Yu, C Meng, M Xu, S Ermon, CUI Bin
Forty-first International Conference on Machine Learning, 2024
932024
When do graph neural networks help with node classification? investigating the homophily principle on node distinguishability
S Luan, C Hua, M Xu, Q Lu, J Zhu, XW Chang, J Fu, J Leskovec, D Precup
Advances in Neural Information Processing Systems 36, 28748-28760, 2023
782023
Energy-based imitation learning
M Liu, T He, M Xu, W Zhang
arXiv preprint arXiv:2004.09395, 2020
602020
An all-atom protein generative model
AE Chu, J Kim, L Cheng, G El Nesr, M Xu, RW Shuai, PS Huang
Proceedings of the National Academy of Sciences 121 (27), e2311500121, 2024
472024
Mudiff: Unified diffusion for complete molecule generation
C Hua, S Luan, M Xu, Z Ying, J Fu, S Ermon, D Precup
Learning on Graphs Conference, 33: 1-33: 26, 2024
472024
Equivariant flow matching with hybrid probability transport for 3d molecule generation
Y Song, J Gong, M Xu, Z Cao, Y Lan, S Ermon, H Zhou, WY Ma
Advances in Neural Information Processing Systems 36, 549-568, 2023
472023
Generative coarse-graining of molecular conformations
W Wang, M Xu, C Cai, BK Miller, T Smidt, Y Wang, J Tang, ...
arXiv preprint arXiv:2201.12176, 2022
432022
Madiff: Offline multi-agent learning with diffusion models
Z Zhu, M Liu, L Mao, B Kang, M Xu, Y Yu, S Ermon, W Zhang
Advances in Neural Information Processing Systems 37, 4177-4206, 2025
322025
The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis, applications and challenges
S Luan, C Hua, Q Lu, L Ma, L Wu, X Wang, M Xu, XW Chang, D Precup, ...
arXiv preprint arXiv:2407.09618, 2024
272024
Buffer of thoughts: Thought-augmented reasoning with large language models
L Yang, Z Yu, T Zhang, S Cao, M Xu, W Zhang, JE Gonzalez, B Cui
Advances in Neural Information Processing Systems 37, 113519-113544, 2025
252025
Vqgraph: Rethinking graph representation space for bridging gnns and mlps
L Yang, Y Tian, M Xu, Z Liu, S Hong, W Qu, W Zhang, B Cui, M Zhang, ...
arXiv preprint arXiv:2308.02117, 2023
242023
המערכת אינה יכולה לבצע את הפעולה כעת. נסה שוב מאוחר יותר.
מאמרים 1–20