Critical assessment of protein intrinsic disorder prediction DPCSCET Marco Necci, Damiano Piovesan, CAID Predictors Nature Methods 18, 472–481, 2019 | 277* | 2019 |
Porter, PaleAle 4.0: high-accuracy prediction of protein secondary structure and relative solvent accessibility C Mirabello, G Pollastri Bioinformatics 29 (16), 2056-2058, 2013 | 152 | 2013 |
rawMSA: end-to-end deep learning using raw multiple sequence alignments C Mirabello, B Wallner PloS one 14 (8), e0220182, 2019 | 94 | 2019 |
Limited access to antigen drives generation of early B cell memory while restraining the plasmablast response V Glaros, R Rauschmeier, AV Artemov, A Reinhardt, S Ols, ... Immunity 54 (9), 2005-2023. e10, 2021 | 68 | 2021 |
Predicting protein-peptide interaction sites using distant protein complexes as structural templates I Johansson-Åkhe, C Mirabello, B Wallner Scientific reports 9 (1), 4267, 2019 | 68 | 2019 |
Toward an accurate prediction of inter-residue distances in proteins using 2D recursive neural networks P Kukic, C Mirabello, G Tradigo, I Walsh, P Veltri, G Pollastri BMC bioinformatics 15, 1-15, 2014 | 58 | 2014 |
InterPred: a pipeline to identify and model protein–protein interactions C Mirabello, B Wallner Proteins: Structure, Function, and Bioinformatics 85 (6), 1159-1170, 2017 | 43 | 2017 |
Methods for estimation of model accuracy in CASP12 A Elofsson, K Joo, C Keasar, J Lee, AHA Maghrabi, B Manavalan, ... Proteins: Structure, Function, and Bioinformatics 86, 361-373, 2018 | 34 | 2018 |
InterPep2: global peptide–protein docking using interaction surface templates I Johansson-Åkhe, C Mirabello, B Wallner Bioinformatics 36 (8), 2458-2465, 2020 | 32 | 2020 |
aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow Z Pochon, N Bergfeldt, E Kırdök, M Vicente, T Naidoo, T Van Der Valk, ... Genome Biology 24 (1), 242, 2023 | 22 | 2023 |
Solution NMR structure of the TRIM21 B-box2 and identification of residues involved in its interaction with the RING domain A Wallenhammar, M Anandapadamanaban, A Lemak, C Mirabello, ... PloS one 12 (7), e0181551, 2017 | 19 | 2017 |
InterPepRank: assessment of docked peptide conformations by a deep graph network I Johansson-Åkhe, C Mirabello, B Wallner Frontiers in bioinformatics 1, 763102, 2021 | 17 | 2021 |
Topology independent structural matching discovers novel templates for protein interfaces C Mirabello, B Wallner Bioinformatics 34 (17), i787-i794, 2018 | 17 | 2018 |
Unmasking AlphaFold to integrate experiments and predictions in multimeric complexes C Mirabello, B Wallner, B Nystedt, S Azinas, M Carroni Nature Communications 15 (1), 8724, 2024 | 16 | 2024 |
DockQ v2: Improved automatic quality measure for protein multimers, nucleic acids, and small molecules C Mirabello, B Wallner Bioinformatics 40 (10), btae586, 2024 | 12 | 2024 |
rawMSA: End-to-end deep learning makes protein sequence profiles and feature extraction obsolete C Mirabello, B Wallner biorxiv, 394437, 2018 | 12 | 2018 |
Single-cell RNA analysis reveals cell-intrinsic functions of CAR T cells correlating with response in a phase II study of lymphoma patients T Sarén, M Ramachandran, G Gammelgård, T Lövgren, C Mirabello, ... Clinical Cancer Research 29 (20), 4139-4152, 2023 | 10 | 2023 |
MassiveFold: unveiling AlphaFold’s hidden potential with optimized and parallelized massive sampling N Raouraoua, C Mirabello, T Véry, C Blanchet, B Wallner, MF Lensink, ... Nature Computational Science, 1-5, 2024 | 6* | 2024 |
InterLig: improved ligand-based virtual screening using topologically independent structural alignments C Mirabello, B Wallner Bioinformatics 36 (10), 3266-3267, 2020 | 6 | 2020 |
Pollastri G C Mirabello Porter, PaleAle 4, 0 | 6 | |