Exploiting multimodal interactions in recommender systems with ensemble algorithms AF Da Costa, MG Manzato Information Systems 56, 120-132, 2016 | 35 | 2016 |
Case recommender: a flexible and extensible python framework for recommender systems A Da Costa, E Fressato, F Neto, M Manzato, R Campello Proceedings of the 12th ACM Conference on Recommender Systems, 494-495, 2018 | 29 | 2018 |
Ensemble learning in recommender systems: Combining multiple user interactions for ranking personalization A da Costa Fortes, MG Manzato Proceedings of the 20th Brazilian Symposium on Multimedia and the Web, 47-54, 2014 | 26 | 2014 |
Boosting collaborative filtering with an ensemble of co-trained recommenders AF Da Costa, MG Manzato, RJGB Campello Expert Systems with Applications 115, 427-441, 2019 | 22 | 2019 |
Mining unstructured content for recommender systems: an ensemble approach MG Manzato, MA Domingues, AC Fortes, CV Sundermann, RM D’Addio, ... Information Retrieval Journal 19, 378-415, 2016 | 18 | 2016 |
Pre-processing approaches for collaborative filtering based on hierarchical clustering FS de Aguiar Neto, AF Da Costa, MG Manzato, RJGB Campello Information Sciences 534, 172-191, 2020 | 16 | 2020 |
Group-based collaborative filtering supported by multiple users' feedback to improve personalized ranking AF Da Costa, MG Manzato, RJGB Campello Proceedings of the 22nd Brazilian Symposium on Multimedia and the Web, 279-286, 2016 | 10 | 2016 |
CoRec: a co-training approach for recommender systems AF Da Costa, MG Manzato, RJGB Campello Proceedings of the 33rd annual acm symposium on applied computing, 696-703, 2018 | 9 | 2018 |
Multimodal interactions in recommender systems: An ensembling approach AF Da Costa, MG Manzato 2014 Brazilian Conference on Intelligent Systems, 67-72, 2014 | 7 | 2014 |
Similarity-based matrix factorization for item cold-start in recommender systems EP Fressato, AF da Costa, MG Manzato 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), 342-347, 2018 | 6 | 2018 |
Incorporating semantic item representations to soften the cold start problem RM D'Addio, EP Fressato, AF Da Costa, MG Manzato Proceedings of the 24th Brazilian Symposium on Multimedia and the Web, 157-164, 2018 | 6 | 2018 |
Pre-processing approaches for collaborative filtering based on hierarchical clustering FSA Neto, AFD Costa, MG Manzato, R Campello Inf. Sci 534, 172-191, 2020 | 5 | 2020 |
Case recommender: A recommender framework AF da Costa, MG Manzato Simpósio Brasileiro de Sistemas Multimídia e Web (WebMedia), 99-102, 2016 | 5 | 2016 |
Enhancing spatial keyword preference query with linked open data JP Dias de Almeida, FA Durão, AF da Costa Journal of Universal Computer Science 24 (11), 1561-1581, 2018 | 4 | 2018 |
Improving personalized ranking in recommender systems with multimodal interactions AF Da Costa, MA Domingues, SO Rezende, MG Manzato 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI …, 2014 | 4 | 2014 |
A personalized clustering-based approach using open linked data for search space reduction in recommender systems AF Costa, RM D'Addio, EP Fressato, MG Manzato Proceedings of the 25th Brazillian Symposium on Multimedia and the Web, 409-416, 2019 | 2 | 2019 |
Cobar: Confidence-based recommender FSA Neto, AF da Costa, MG Manzato arXiv preprint arXiv:1808.07089, 2018 | 2 | 2018 |
Introducing the concept of “always-welcome recommendations” EB dos Santos, AF Da Costa, RM D'addio, MG Manzato, R Goularte 2015 IEEE/ACIS 14th International Conference on Computer and Information …, 2015 | 2 | 2015 |
Evaluating Multiple User Interactions for Ranking Personalization Using Ensemble Methods. FA Durao, BS Cabral, MG Manzato, AF Da Costa SEKE, 697-696, 2018 | 1 | 2018 |
Enhancing recommender systems by enrichment with pre-processing approaches supported by users\'feedback AF Costa Universidade de São Paulo, 2019 | | 2019 |