Energy flow networks: deep sets for particle jets PT Komiske, EM Metodiev, J Thaler Journal of High Energy Physics 2019 (1), 1-46, 2019 | 377 | 2019 |
Deep learning in color: towards automated quark/gluon jet discrimination PT Komiske, EM Metodiev, MD Schwartz Journal of High Energy Physics 2017 (1), 1-23, 2017 | 366 | 2017 |
The machine learning landscape of top taggers G Kasieczka, T Plehn, A Butter, K Cranmer, D Debnath, BM Dillon, ... SciPost Physics 7 (1), 014, 2019 | 288 | 2019 |
Energy flow polynomials: A complete linear basis for jet substructure PT Komiske, EM Metodiev, J Thaler Journal of High Energy Physics 2018 (4), 1-54, 2018 | 203 | 2018 |
The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics G Kasieczka, B Nachman, D Shih, O Amram, A Andreassen, ... Reports on progress in physics 84 (12), 124201, 2021 | 195 | 2021 |
OmniFold: a method to simultaneously unfold all observables A Andreassen, PT Komiske, EM Metodiev, B Nachman, J Thaler Physical review letters 124 (18), 182001, 2020 | 179 | 2020 |
Metric space of collider events PT Komiske, EM Metodiev, J Thaler Physical review letters 123 (4), 041801, 2019 | 159 | 2019 |
Pileup mitigation with machine learning (PUMML) PT Komiske, EM Metodiev, B Nachman, MD Schwartz Journal of High Energy Physics 2017 (12), 1-20, 2017 | 127 | 2017 |
Learning to classify from impure samples with high-dimensional data PT Komiske, EM Metodiev, B Nachman, MD Schwartz Physical Review D 98 (1), 011502, 2018 | 107 | 2018 |
Analyzing -Point Energy Correlators inside Jets with CMS Open Data PT Komiske, I Moult, J Thaler, HX Zhu Physical Review Letters 130 (5), 051901, 2023 | 93 | 2023 |
An operational definition of quark and gluon jets PT Komiske, EM Metodiev, J Thaler Journal of High Energy Physics 2018 (11), 1-36, 2018 | 90 | 2018 |
The hidden geometry of particle collisions PT Komiske, EM Metodiev, J Thaler Journal of High Energy Physics 2020 (7), 1-53, 2020 | 71 | 2020 |
Exploring the space of jets with CMS open data PT Komiske, R Mastandrea, EM Metodiev, P Naik, J Thaler Physical Review D 101 (3), 034009, 2020 | 62 | 2020 |
Disentangling quarks and gluons in CMS open data PT Komiske, S Kryhin, J Thaler Physical Review D 106 (9), 094021, 2022 | 33 | 2022 |
Scaffolding simulations with deep learning for high-dimensional deconvolution A Andreassen, PT Komiske, EM Metodiev, B Nachman, A Suresh, ... arXiv preprint arXiv:2105.04448, 2021 | 29 | 2021 |
Cutting multiparticle correlators down to size PT Komiske, EM Metodiev, J Thaler Physical Review D 101 (3), 036019, 2020 | 24 | 2020 |
Preserving new physics while simultaneously unfolding all observables P Komiske, WP McCormack, B Nachman Physical Review D 104 (7), 076027, 2021 | 9 | 2021 |
Learning to remove Pileup at the LHC with Jet Images PT Komiske, EM Metodiev, B Nachman, MD Schwartz Journal of Physics: Conference Series 1085 (4), 042010, 2018 | 9 | 2018 |
Pileup and Infrared Radiation Annihilation (PIRANHA): a paradigm for continuous jet grooming S Alipour-Fard, PT Komiske, EM Metodiev, J Thaler Journal of High Energy Physics 2023 (9), 1-81, 2023 | 7 | 2023 |
Degeneracy engineering for classical and quantum annealing: A case study of sparse linear regression in collider physics ER Anschuetz, L Funcke, PT Komiske, S Kryhin, J Thaler Physical Review D 106 (5), 056008, 2022 | 2 | 2022 |