フォロー
Alexander Fengler
Alexander Fengler
確認したメール アドレス: brown.edu - ホームページ
タイトル
引用先
引用先
Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience
A Fengler, LN Govindarajan, T Chen, MJ Frank
Elife 10, e65074, 2021
762021
Beyond drift diffusion models: Fitting a broad class of decision and reinforcement learning models with HDDM
A Fengler, K Bera, ML Pedersen, MJ Frank
Journal of cognitive neuroscience 34 (10), 1780-1805, 2022
252022
A hitchhiker’s guide to Bayesian hierarchical drift-diffusion modeling with dockerHDDM
W Pan, H Geng, L Zhang, A Fengler, M Frank, RY Zhang, H Chuan-Peng
OSF, 2022
92022
Predicted utility modulates working memory fidelity in the brain
EJ Levin, JA Brissenden, A Fengler, D Badre
Cortex 160, 115-133, 2023
62023
Encoder-Decoder Neural Architectures for Fast Amortized Inference of CognitiveProcess Models
A Fengler, LN Govindarajan, MJ Frank
Proceedings of the Annual Meeting of the Cognitive Science Society 42, 2020
42020
dockerHDDM: A User-Friendly Environment for Bayesian Hierarchical Drift-Diffusion Modeling
W Pan, H Geng, L Zhang, A Fengler, MJ Frank, RY Zhang, H Chuan-Peng
Advances in Methods and Practices in Psychological Science 8 (1 …, 2025
22025
Beyond Drift Diffusion Models: Fitting a broad class of decision and RL models with HDDM
A Fengler, K Bera, ML Pedersen, MJ Frank
bioRxiv, 2022.06. 19.496747, 2022
12022
Abc-nn: Approximate bayesian computation with neural networks to learn likelihood functions for efficient parameter estimation
A Fengler, M Frank
12019
Modelling History-Dependent Evidence Accumulation across Species
A Urai, ZG Gunes, K Fernandez, A Fengler
Proceedings of the Annual Meeting of the Cognitive Science Society 46, 2024
2024
The Perils of Omitting Omissions when Modeling Evidence Accumulation
X Leng, A Fengler, A Shenhav, MJ Frank
Proceedings of the Annual Meeting of the Cognitive Science Society 46, 2024
2024
Likelihood Approximations for Bayesian Analysis of Sequential Sampling Models
A Fengler
Brown University Providence, Rhode Island, 2023
2023
Likelihood Approximation Networks enable fast estimation of generalized sequential sampling models as the choice rule in RL
K Bera, A Fengler, MJ Frank
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–12