フォロー
Lokesh Nagalapatti
Lokesh Nagalapatti
PhD Scholar, IIT Bombay
確認したメール アドレス: cse.iitb.ac.in - ホームページ
タイトル
引用先
引用先
Overview and importance of data quality for machine learning tasks
A Jain, H Patel, L Nagalapatti, N Gupta, S Mehta, S Guttula, S Mujumdar, ...
Proceedings of the 26th ACM SIGKDD international conference on knowledge …, 2020
3422020
Outlier resistant unsupervised deep architectures for attributed network embedding
S Bandyopadhyay, L N, SV Vivek, MN Murty
Proceedings of the 13th international conference on web search and data …, 2020
1312020
Outlier aware network embedding for attributed networks
S Bandyopadhyay, N Lokesh, MN Murty
Proceedings of the AAAI conference on artificial intelligence 33 (01), 12-19, 2019
1072019
Game of gradients: Mitigating irrelevant clients in federated learning
L Nagalapatti, R Narayanam
Proceedings of the AAAI Conference on Artificial Intelligence 35 (10), 9046-9054, 2021
892021
Data Quality Toolkit: Automatic assessment of data quality and remediation for machine learning datasets
N Gupta, H Patel, S Afzal, N Panwar, RS Mittal, S Guttula, A Jain, ...
arXiv preprint arXiv:2108.05935, 2021
482021
Data augmentation for fairness in personal knowledge base population
LS Vannur, B Ganesan, L Nagalapatti, H Patel, MN Tippeswamy
Trends and Applications in Knowledge Discovery and Data Mining: PAKDD 2021 …, 2021
29*2021
Is your data relevant?: Dynamic selection of relevant data for federated learning
L Nagalapatti, RS Mittal, R Narayanam
Proceedings of the AAAI Conference on Artificial Intelligence 36 (7), 7859-7867, 2022
242022
A Data-centric AI Framework for Automating Exploratory Data Analysis and Data Quality Tasks
H Patel, S Guttula, N Gupta, S Hans, RS Mittal, L N
ACM Journal of Data and Information Quality 15 (4), 1-26, 2023
152023
Ranking data slices for ML model validation: A shapley value approach
E Farchi, R Narayanam, L Nagalapatti
2021 IEEE 37th International Conference on Data Engineering (ICDE), 1937-1942, 2021
102021
Data Quality Toolkit: Automatic assessment of data quality and remediation for machine learning datasets. arXiv 2021
N Gupta, H Patel, S Afzal, N Panwar, RS Mittal, S Guttula, A Jain, ...
arXiv preprint arXiv:2108.05935, 2023
62023
Continuous treatment effect estimation using gradient interpolation and kernel smoothing
L Nagalapatti, A Iyer, A De, S Sarawagi
Proceedings of the AAAI Conference on Artificial Intelligence 38 (13), 14397 …, 2024
52024
Machine-learning model retraining detection
RS Mittal, L Nagalapatti, N Gupta, H Patel
US Patent App. 17/036,843, 2022
32022
Gradient Coreset for Federated Learning
D Sivasubramanian, L Nagalapatti, R Iyer, G Ramakrishnan
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2024
12024
Federated machine learning based on partially secured spatio-temporal data
L Nagalapatti, S Bandyopadhyay, RS Mittal, R Narayanam
US Patent App. 17/545,573, 2023
12023
Quality assessment of machine-learning model dataset
H Patel, L Nagalapatti, N Panwar, N Gupta, RS Mittal, S Mehta, ...
US Patent App. 17/035,111, 2022
12022
Tab-Shapley: Identifying Top-k Tabular Data Quality Insights
M Padala, L Nagalapatti, A Tyagi, R Narayanam, SK Saini
arXiv preprint arXiv:2501.06685, 2025
2025
PairNet: Training with Observed Pairs to Estimate Individual Treatment Effect
L Nagalapatti, P Singhal, A Ghosh, S Sarawagi
arXiv preprint arXiv:2406.03864, 2024
2024
Generating task-specific training data
L Nagalapatti, RS Mittal, S Bandyopadhyay, R Narayanam
US Patent 11,983,238, 2024
2024
Training sample set generation from imbalanced data in view of user goals
RS Mittal, L Nagalapatti, H Patel, N Gupta
US Patent 11,836,219, 2023
2023
Federated learning data source selection
RS Mittal, R Narayanam, L Nagalapatti, S Mehta
US Patent App. 17/509,507, 2023
2023
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20