Learning-guided exploration for efficient sampling-based motion planning in high dimensions L Schramm, A Boularias 2022 International Conference on Robotics and Automation (ICRA), 4429-4435, 2022 | 11 | 2022 |
Usher: Unbiased sampling for hindsight experience replay L Schramm, Y Deng, E Granados, A Boularias Conference on Robot Learning, 2073-2082, 2023 | 9 | 2023 |
Learning to transfer dynamic models of underactuated soft robotic hands L Schramm, A Sintov, A Boularias 2020 IEEE International Conference on Robotics and Automation (ICRA), 4579-4585, 2020 | 9 | 2020 |
Improving performance of automatic program repair using learned heuristics L Schramm Proceedings of the 2017 11th Joint Meeting on Foundations of Software …, 2017 | 9 | 2017 |
Autoregressive action sequence learning for robotic manipulation X Zhang, Y Liu, H Chang, L Schramm, A Boularias arXiv preprint arXiv:2410.03132, 2024 | 2 | 2024 |
DAP: Diffusion-based Affordance Prediction for Multi-modality Storage H Chang, K Boyalakuntla, Y Liu, X Zhang, L Schramm, A Boularias 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2024 | | 2024 |
Bellman Diffusion Models L Schramm, A Boularias arXiv preprint arXiv:2407.12163, 2024 | | 2024 |
Provably efficient long-horizon exploration in Monte Carlo tree search through state occupancy regularization L Schramm, A Boularias arXiv preprint arXiv:2407.05511, 2024 | | 2024 |
A Study of Neural Networks for the Quantum Many-Body Problem LB Schramm | | 2018 |