フォロー
Avanika Narayan
Avanika Narayan
確認したメール アドレス: stanford.edu
タイトル
引用先
引用先
On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2021
46762021
Ask me anything: A simple strategy for prompting language models
S Arora, A Narayan, MF Chen, L Orr, N Guha, K Bhatia, I Chami, F Sala, ...
arXiv preprint arXiv:2210.02441, 2022
2222022
Can foundation models wrangle your data?
A Narayan, I Chami, L Orr, S Arora, C Ré
arXiv preprint arXiv:2205.09911, 2022
2002022
On the opportunities and risks of foundation models. arXiv 2021
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2023
1072023
& Liang, P.(2021). On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 0
89
On the opportunities and risks of foundation models (2021)
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2022
742022
Language models enable simple systems for generating structured views of heterogeneous data lakes
S Arora, B Yang, S Eyuboglu, A Narayan, A Hojel, I Trummer, C Ré
arXiv preprint arXiv:2304.09433, 2023
672023
Rekall: Specifying video events using compositions of spatiotemporal labels
DY Fu, W Crichton, J Hong, X Yao, H Zhang, A Truong, A Narayan, ...
arXiv preprint arXiv:1910.02993, 2019
612019
Perfectly balanced: Improving transfer and robustness of supervised contrastive learning
M Chen, DY Fu, A Narayan, M Zhang, Z Song, K Fatahalian, C Ré
International Conference on Machine Learning, 3090-3122, 2022
512022
Personalized benchmarking with the ludwig benchmarking toolkit
A Narayan, P Molino, K Goel, W Neiswanger, C Re
arXiv preprint arXiv:2111.04260, 2021
122021
Neural generation meets real people: Building a social, informative open-domain dialogue agent
EA Chi, A Paranjape, A See, C Chiam, T Chang, K Kenealy, SK Lim, ...
arXiv preprint arXiv:2207.12021, 2022
112022
Neural, neural everywhere: Controlled generation meets scaffolded, structured dialogue
EA Chi, C Chiam, T Chang, SK Lim, C Rastogi, A Iyabor, Y He, ...
Alexa Prize Proceedings, 2021
112021
Automating the Enterprise with Foundation Models
M Wornow, A Narayan, K Opsahl-Ong, Q McIntyre, NH Shah, C Re
arXiv preprint arXiv:2405.03710, 2024
102024
TART: A plug-and-play Transformer module for task-agnostic reasoning
K Bhatia, A Narayan, CM De Sa, C Ré
Advances in Neural Information Processing Systems 36, 9751-9788, 2023
82023
Do Multimodal Foundation Models Understand Enterprise Workflows? A Benchmark for Business Process Management Tasks
M Wornow, A Narayan, B Viggiano, IS Khare, T Verma, T Thompson, ...
arXiv preprint arXiv:2406.13264, 2024
72024
Mistral–a journey towards reproducible language model training
S Karamcheti, L Orr, J Bolton, T Zhang, K Goel, A Narayan, R Bommasani, ...
Palo Alto: Stanford Center for Research on Foundation Models, 2021
52021
Cookbook: A framework for improving LLM generative abilities via programmatic data generating templates
A Narayan, MF Chen, K Bhatia, C Ré
arXiv preprint arXiv:2410.05224, 2024
22024
Wonderbread: A benchmark for evaluating multimodal foundation models on business process management tasks
M Wornow, A Narayan, B Viggiano, IS Khare, T Verma, T Thompson, ...
The Thirty-eight Conference on Neural Information Processing Systems …, 0
1
DAMsL: A Meta-Learning Based Approach for Dialogue State Tracking
A Narayan, J Hedtke
https://web. stanford. edu/class/archive/cs/cs224n/cs224n 1204, 1-10, 0
1
Distributed Collaborative Organisations
A Narayan, J Dietz, G Xethalis, C Crawford, D Bollier, H Shadab, ...
2014
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20