フォロー
Marvin Fritz
Marvin Fritz
PostDoc at Johann Radon Institute for Computational and Applied Mathematics
確認したメール アドレス: ricam.oeaw.ac.at - ホームページ
タイトル
引用先
引用先
Local and nonlocal phase-field models of tumor growth and invasion due to ECM degradation
M Fritz, EABF Lima, V Nikolić, JT Oden, B Wohlmuth
Mathematical Models and Methods in Applied Sciences 29 (13), 2433-2468, 2019
372019
On the unsteady Darcy-Forchheimer-Brinkman equation in local and nonlocal tumor growth models
M Fritz, EABF Lima, JT Oden, B Wohlmuth
Mathematical Models and Methods in Applied Sciences 29 (09), 1691-1731, 2019
342019
Modeling and simulation of vascular tumors embedded in evolving capillary networks
M Fritz, PK Jha, T Köppl, JT Oden, A Wagner, B Wohlmuth
Computer Methods in Applied Mechanics and Engineering 384, 113975, 2021
332021
Analysis of a new multispecies tumor growth model coupling 3D phase-fields with a 1D vascular network
M Fritz, PK Jha, T Köppl, JT Oden, B Wohlmuth
Nonlinear Analysis: Real World Applications 61, 103331, 2021
302021
On a subdiffusive tumour growth model with fractional time derivative
M Fritz, C Kuttler, ML Rajendran, B Wohlmuth, L Scarabosio
IMA Journal of Applied Mathematics, 2021
252021
Time-fractional Cahn–Hilliard equation: Well-posedness, degeneracy, and numerical solutions
M Fritz, ML Rajendran, B Wohlmuth
Computers & Mathematics with Applications 108, 66-87, 2022
242022
Equivalence between a time-fractional and an integer-order gradient flow: The memory effect reflected in the energy
M Fritz, U Khristenko, B Wohlmuth
Advances in Nonlinear Analysis 12 (1), 2023
182023
A 1D–0D–3D coupled model for simulating blood flow and transport processes in breast tissue
M Fritz, T Köppl, JT Oden, A Wagner, B Wohlmuth, C Wu
International Journal for Numerical Methods in Biomedical Engineering 38 (7 …, 2022
172022
Tumor evolution models of phase-field type with nonlocal effects and angiogenesis
M Fritz
Bulletin of Mathematical Biology 85 (6), 44, 2023
162023
Well-posedness and numerical treatment of the Blackstock equation in nonlinear acoustics
M Fritz, V Nikolić, B Wohlmuth
Mathematical Models and Methods in Applied Sciences 28 (13), 2557-2597, 2018
152018
Analysis of a dilute polymer model with a time-fractional derivative
M Fritz, E Süli, B Wohlmuth
SIAM Journal on Mathematical Analysis 56 (2), 2063-2089, 2024
52024
On the well-posedness of the Cahn-Hilliard-Biot model and its applications to tumor growth
M Fritz
arXiv preprint arXiv:2310.07050, 2023
52023
A phase-field model for non-small cell lung cancer under the effects of immunotherapy
A Wagner, P Schlicke, M Fritz, C Kuttler, JT Oden, C Schumann, ...
arXiv preprint arXiv:2303.09378, 2023
52023
Structure‐Preserving Approximation of the Cahn‐Hilliard‐Biot System
A Brunk, M Fritz
Numerical Methods for Partial Differential Equations 41 (1), e23159, 2025
22025
Well-posedness and simulation of weak solutions to the time-fractional Fokker-Planck equation with general forcing
M Fritz
arXiv preprint arXiv:2307.16615, 2023
22023
Well-posedness of nonlocal and mixed-dimensional phase-field models applied to tumor growth
M Fritz
Technical University of Munich, 2022
12022
Analysis and computations of a stochastic Cahn–Hilliard model for tumor growth with chemotaxis and variable mobility
M Fritz, L Scarpa
Stochastics and Partial Differential Equations: Analysis and Computations, 1-46, 2025
2025
Well‐Posedness, Long‐Time Behavior, and Discretization of Some Models of Nonlinear Acoustics in Velocity–Enthalpy Formulation
H Egger, M Fritz
Mathematical Methods in the Applied Sciences, 2025
2025
Analysis and discretization of the Ohta-Kawasaki equation with forcing and degenerate mobility
A Brunk, M Fritz
arXiv preprint arXiv:2411.09498, 2024
2024
Stabilization to trajectories of nonisothermal Cahn-Hilliard equations
B Azmi, M Fritz, SS Rodrigues
arXiv preprint arXiv:2411.04018, 2024
2024
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20