Machine learning in chemical reaction space S Stocker, G Csanyi, K Reuter, JT Margraf Nature communications 11 (1), 5505, 2020 | 160 | 2020 |
How robust are modern graph neural network potentials in long and hot molecular dynamics simulations? S Stocker, J Gasteiger, F Becker, S Günnemann, JT Margraf Machine Learning: Science and Technology 3 (4), 045010, 2022 | 89 | 2022 |
Size‐Extensive Molecular Machine Learning with Global Representations H Jung, S Stocker, C Kunkel, H Oberhofer, B Han, K Reuter, JT Margraf ChemSystemsChem 2 (4), e1900052, 2020 | 39 | 2020 |
Machine-learning driven global optimization of surface adsorbate geometries H Jung, L Sauerland, S Stocker, K Reuter, JT Margraf npj Computational Materials 9 (1), 114, 2023 | 31 | 2023 |
Estimating free energy barriers for heterogeneous catalytic reactions with machine learning potentials and umbrella integration S Stocker, H Jung, G Csányi, CF Goldsmith, K Reuter, JT Margraf Journal of Chemical Theory and Computation 19 (19), 6796-6804, 2023 | 19 | 2023 |
Machine-Learning Driven Exploration of Catalytic Reaction Networks H Jung 2023 AIChE Annual Meeting, 2023 | | 2023 |
Transferability in Chemical Machine Learning S Stocker Technische Universität München, 2022 | | 2022 |