フォロー
Frank Schäfer
Frank Schäfer
確認したメール アドレス: mit.edu
タイトル
引用先
引用先
Unsupervised identification of topological phase transitions using predictive models
E Greplova, A Valenti, G Boschung, F Schäfer, N Lörch, S Huber
New Journal of Physics, 2020
942020
A differentiable programming method for quantum control
F Schäfer, M Kloc, C Bruder, N Lörch
Machine Learning: Science and Technology 1 (3), 035009, 2020
632020
Vector field divergence of predictive model output as indication of phase transitions
F Schäfer, N Lörch
Physical Review E 99 (6), 062107, 2019
522019
Automatic differentiation of programs with discrete randomness
G Arya, M Schauer, F Schäfer, C Rackauckas
Advances in Neural Information Processing Systems 35, 10435-10447, 2022
482022
Interpretable and unsupervised phase classification
J Arnold, F Schäfer, M Žonda, AUJ Lode
Physical Review Research 3 (3), 033052, 2021
432021
Replacing neural networks by optimal analytical predictors for the detection of phase transitions
J Arnold, F Schäfer
Physical Review X 12 (3), 031044, 2022
282022
Control of stochastic quantum dynamics by differentiable programming
F Schäfer, P Sekatski, M Koppenhöfer, C Bruder, M Kloc
Machine Learning: Science and Technology 2 (3), 035004, 2021
282021
NonlinearSolve. jl: High-Performance and Robust Solvers for Systems of Nonlinear Equations in Julia
A Pal, F Holtorf, A Larsson, T Loman, F Schäfer, Q Qu, A Edelman, ...
arXiv preprint arXiv:2403.16341, 2024
142024
AbstractDifferentiation. jl: Backend-Agnostic Differentiable Programming in Julia
F Schäfer, M Tarek, L White, C Rackauckas
arXiv preprint arXiv:2109.12449, 2021
132021
Mapping out phase diagrams with generative classifiers
J Arnold, F Schäfer, A Edelman, C Bruder
Physical Review Letters 132 (20), 207301, 2024
122024
Continuous monitoring and feedback control of qubit dynamics using differentiable programming
F Schäfer, P Sekatski, M Koppenhoefer, N Loerch, C Bruder, M Kloc
Bulletin of the American Physical Society, 2021
12*2021
Differentiable Programming for Differential Equations: A Review
F Sapienza, J Bolibar, F Schäfer, B Groenke, A Pal, V Boussange, ...
arXiv preprint arXiv:2406.09699, 2024
112024
Differentiating Metropolis-Hastings to optimize intractable densities
G Arya, R Seyer, F Schäfer, K Chandra, AK Lew, M Huot, VK Mansinghka, ...
arXiv preprint arXiv:2306.07961, 2023
82023
Spectral Structure and Many-Body Dynamics of Ultracold Bosons in a Double-Well
F Schäfer, MA Bastarrachea-Magnani, AUJ Lode, L de Forges de Parny, ...
Entropy 22 (4), 382, 2020
82020
Machine learning phase transitions: Connections to the Fisher information
J Arnold, N Lörch, F Holtorf, F Schäfer
arXiv preprint arXiv:2311.10710, 2023
52023
Data-Driven Reconstruction of Spectral Conductivity and Chemical Potential Using Thermoelectric Transport Properties
T Hirosawa, F Schäfer, H Maebashi, H Matsuura, M Ogata
Journal of the Physical Society of Japan 91 (11), 114603, 2022
52022
Fast Detection of Phase Transitions with Multi-Task Learning-by-Confusion
J Arnold, F Schäfer, N Lörch
arXiv preprint arXiv:2311.09128, 2023
32023
Performance Bounds for Quantum Control
F Holtorf, F Schäfer, J Arnold, C Rackauckas, A Edelman
arXiv preprint arXiv:2304.03366, 2023
32023
Automated reconstruction of bound states in bilayer graphene quantum dots
J Bucko, F Schäfer, F Herman, R Garreis, C Tong, A Kurzmann, T Ihn, ...
Physical Review Applied 19 (2), 024015, 2023
32023
Cooperative scattering of scalar waves by optimized configurations of point scatterers
F Schäfer, F Eckert, T Wellens
Journal of Physics B: Atomic, Molecular and Optical Physics 50 (23), 235502, 2017
32017
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20