An attentive survey of attention models S Chaudhari, V Mithal, G Polatkan, R Ramanath ACM Transactions on Intelligent Systems and Technology (TIST) 12 (5), 1-32, 2021 | 900 | 2021 |
Deep learning with hierarchical convolutional factor analysis B Chen, G Polatkan, G Sapiro, D Blei, D Dunson, L Carin IEEE transactions on pattern analysis and machine intelligence 35 (8), 1887-1901, 2013 | 141 | 2013 |
A Bayesian nonparametric approach to image super-resolution G Polatkan, M Zhou, L Carin, D Blei, I Daubechies IEEE transactions on pattern analysis and machine intelligence 37 (2), 346-358, 2014 | 104 | 2014 |
Detection of forgery in paintings using supervised learning G Polatkan, S Jafarpour, A Brasoveanu, S Hughes, I Daubechies 2009 16th IEEE International Conference on Image Processing (ICIP), 2921-2924, 2009 | 103 | 2009 |
Towards deep and representation learning for talent search at linkedin R Ramanath, H Inan, G Polatkan, B Hu, Q Guo, C Ozcaglar, X Wu, ... Proceedings of the 27th ACM international conference on information and …, 2018 | 71 | 2018 |
Stylistic analysis of paintings usingwavelets and machine learning S Jafarpour, G Polatkan, E Brevdo, S Hughes, A Brasoveanu, ... 2009 17th european signal processing conference, 1220-1224, 2009 | 60 | 2009 |
The Hierarchical Beta Process for Convolutional Factor Analysis and Deep Learning. B Chen, G Polatkan, G Sapiro, DB Dunson, L Carin ICML, 361-368, 2011 | 53 | 2011 |
Social media data mining and analytics G Szabo, G Polatkan, PO Boykin, A Chalkiopoulos John Wiley & Sons, 2018 | 26 | 2018 |
Dependence of cooperative vehicle system performance on market penetration SE Shladover, G Polatkan, R Sengupta, J VanderWerf, M Ergen, ... Transportation Research Record 2000 (1), 121-127, 2007 | 26 | 2007 |
An attentive survey of attention models. arXiv 2019 S Chaudhari, G Polatkan, R Ramanath, V Mithal arXiv preprint arXiv:1904.02874, 0 | 24 | |
Recommendations using session relevance and incremental learning R Ramanath, K Salomatin, JD Gee, OA Dalal, G Polatkan, SS Gerrard, ... US Patent App. 16/912,245, 2021 | 14 | 2021 |
Techniques for querying user profiles using neural networks R Ramanath, G Polatkan, Q Guo, C Ozcaglar, K Kenthapadi, SC Geyik US Patent 10,795,897, 2020 | 13 | 2020 |
Unsupervised learning of entity representations using graphs R Ramanath, G Polatkan, Q Guo, C Ozcaglar, K Kenthapadi, SC Geyik US Patent 11,106,979, 2021 | 12 | 2021 |
Generating supervised embedding representations for search R Ramanath, G Polatkan, Q Guo, C Ozcaglar, K Kenthapadi, SC Geyik US Patent App. 16/021,639, 2020 | 12 | 2020 |
Learning to be relevant: evolution of a course recommendation system S Rao, K Salomatin, G Polatkan, M Joshi, S Chaudhari, V Tcheprasov, ... Proceedings of the 28th ACM International Conference on Information and …, 2019 | 11 | 2019 |
Deep neural network architecture for search R Ramanath, G Polatkan, L Xu, B Hu, S Zhou, HH Lee US Patent App. 15/941,314, 2019 | 11 | 2019 |
Cluster-based collaborative filtering K Salomatin, F Hedayati, JD Gee, MS Joshi, S Rao, G Polatkan, D Kumar US Patent 10,887,655, 2021 | 10 | 2021 |
Painting analysis using wavelets and probabilistic topic models T Wu, G Polatkan, D Steel, W Brown, I Daubechies, R Calderbank 2013 IEEE International Conference on Image Processing, 3264-3268, 2013 | 10 | 2013 |
Feature generation pipeline for machine learning IICW Lloyd, K Salomatin, JD Gee, MS Joshi, S Rao, V Tcheprasov, ... US Patent 11,195,023, 2021 | 9 | 2021 |
Lambda learner: Fast incremental learning on data streams R Ramanath, K Salomatin, JD Gee, K Talanine, O Dalal, G Polatkan, ... Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021 | 9 | 2021 |