フォロー
Krithi Pushpanathan
Krithi Pushpanathan
確認したメール アドレス: nus.edu.sg - ホームページ
タイトル
引用先
引用先
Benchmarking large language models’ performances for myopia care: a comparative analysis of ChatGPT-3.5, ChatGPT-4.0, and Google Bard
ZW Lim, K Pushpanathan, SME Yew, Y Lai, CH Sun, JSH Lam, DZ Chen, ...
EBioMedicine 95, 2023
1902023
Popular large language model chatbots’ accuracy, comprehensiveness, and self-awareness in answering ocular symptom queries
K Pushpanathan, ZW Lim, SME Yew, DZ Chen, HAHE Lin, JHL Goh, ...
Iscience 26 (11), 2023
382023
Metabolic engineering of microbes for monoterpenoid production
K Zhu, J Kong, B Zhao, L Rong, S Liu, Z Lu, C Zhang, D Xiao, ...
Biotechnology Advances 53, 107837, 2021
342021
Engineering Yarrowia lipolytica to Produce Itaconic Acid From Waste Cooking Oil
L Rong, L Miao, S Wang, Y Wang, S Liu, Z Lu, B Zhao, C Zhang, D Xiao, ...
Frontiers in Bioengineering and Biotechnology 10, 888869, 2022
262022
Enhanced limonene production by metabolically engineered Yarrowia lipolytica from cheap carbon sources
S Li, L Rong, S Wang, S Liu, Z Lu, L Miao, B Zhao, C Zhang, D Xiao, ...
Chemical Engineering Science 249, 117342, 2022
222022
Artificial intelligence for diabetes care: current and future prospects
B Sheng, K Pushpanathan, Z Guan, QH Lim, ZW Lim, SME Yew, JHL Goh, ...
The Lancet Diabetes & Endocrinology 12 (8), 569-595, 2024
202024
Review of emerging trends and projection of future developments in large language models research in ophthalmology
M Wong, ZW Lim, K Pushpanathan, CY Cheung, YX Wang, D Chen, ...
British Journal of Ophthalmology 108 (10), 1362-1370, 2024
162024
Benchmarking large language models' performances for myopia care: a comparative analysis of ChatGPT-3.5, ChatGPT-4.0, and Google Bard. EBioMedicine 95: 104770
ZW Lim, K Pushpanathan, SME Yew, Y Lai, CH Sun, JSH Lam, DZ Chen, ...
162023
Benchmarking large language models’ performances for myopia care: a comparative analysis of ChatGPT-3.5, ChatGPT-4.0, and Google Bard, EBioMedicine 95 (2023)
ZW Lim, K Pushpanathan, SME Yew, Y Lai, CH Sun, JSH Lam, DZ Chen, ...
62023
Are Traditional Deep Learning Model Approaches as Effective as a Retinal-Specific Foundation Model for Ocular and Systemic Disease Detection?
SME Yew, X Lei, JHL Goh, Y Chen, S Srinivasan, M Chee, ...
arXiv preprint arXiv:2501.12016, 2025
2025
Can OpenAI o1 Reason Well in Ophthalmology? A 6,990-Question Head-to-Head Evaluation Study
S Srinivasan, X Ai, M Zou, K Zou, H Kim, TWS Lo, K Pushpanathan, ...
arXiv preprint arXiv:2501.13949, 2025
2025
Deep Imbalanced Regression Model for Predicting Refractive Error from Retinal Photos
SME Yew, X Lei, Y Chen, JHL Goh, K Pushpanathan, CC Xue, YX Wang, ...
Ophthalmology Science, 100659, 2024
2024
Language Enhanced Model for Eye (LEME): An Open-Source Ophthalmology-Specific Large Language Model
A Gilson, X Ai, Q Xie, S Srinivasan, K Pushpanathan, MB Singer, J Huang, ...
arXiv preprint arXiv:2410.03740, 2024
2024
Can OpenAI o1's Enhanced Reasoning Capabilities Extend to Ophthalmology? A Benchmark Study Across Large Language Models and Text Generation Metrics
S Srinivasan, X Ai, M Zou, K Zou, H Kim, TWS Lo, K Pushpanathan, ...
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–14