HTR solver: An open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics M Di Renzo, L Fu, J Urzay Computer Physics Communications 255, 107262, 2020 | 99 | 2020 |
Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies M Di Renzo, J Urzay Journal of Fluid Mechanics 912, A29, 2021 | 79 | 2021 |
Aerodynamic generation of electric fields in turbulence laden with charged inertial particles M Di Renzo, J Urzay Nature communications 9 (1), 1676, 2018 | 44 | 2018 |
The effects of incident electric fields on counterflow diffusion flames M Di Renzo, J Urzay, P De Palma, MD de Tullio, G Pascazio Combustion and Flame 193, 177-191, 2018 | 32 | 2018 |
Engineering aspects of hypersonic turbulent flows at suborbital enthalpies J Urzay, M Di Renzo Annual Research Briefs, Center for Turbulence Research, 7-32, 2021 | 26 | 2021 |
Scaling implicit parallelism via dynamic control replication M Bauer, W Lee, E Slaughter, Z Jia, M Di Renzo, M Papadakis, ... Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of …, 2021 | 22 | 2021 |
Large-eddy simulations of idealized shock/boundary-layer interactions with crossflow J Larsson, V Kumar, N Oberoi, MD Renzo, S Pirozzoli AIAA journal 60 (5), 2767-2779, 2022 | 20 | 2022 |
An efficient flamelet progress-variable method for modeling non-premixed flames in weak electric fields M Di Renzo, P De Palma, MD de Tullio, G Pascazio Computers & Fluids 157, 14-27, 2017 | 20 | 2017 |
Crossflow effects on shock wave/turbulent boundary layer interactions M Di Renzo, N Oberoi, J Larsson, S Pirozzoli Theoretical and Computational Fluid Dynamics 36 (2), 327-344, 2022 | 19 | 2022 |
LES of the Sandia flame D using an FPV combustion model M Di Renzo, A Coclite, MD de Tullio, P De Palma, G Pascazio Energy Procedia 82, 402-409, 2015 | 16 | 2015 |
HTR-1.2 solver: Hypersonic Task-based Research solver version 1.2 M Di Renzo, S Pirozzoli Computer Physics Communications 261, 107733, 2021 | 12 | 2021 |
HTR-1.3 solver: Predicting electrified combustion using the hypersonic task-based research solver M Di Renzo Computer Physics Communications 272, 108247, 2022 | 11 | 2022 |
Locally self-similar formulation for hypersonic laminar boundary layers in thermochemical nonequilibrium C Williams, M Di Renzo, P Moin, J Urzay CTR Annu. Res. Briefs 2021, 119-128, 2021 | 10 | 2021 |
Mitigation of turbophoresis in particle-laden turbulent channel flows by using incident electric fields M Di Renzo, PL Johnson, M Bassenne, L Villafañe, J Urzay Physical Review Fluids 4 (12), 124303, 2019 | 10 | 2019 |
The breakdown of self-similarity in electrified counterflow diffusion flames M Di Renzo, G Pascazio, J Urzay Combustion and Flame 205, 231-240, 2019 | 10 | 2019 |
Progress on laser ignition simulations of a CH4/O2 subscale rocket combustor using a multi-GPU task-based solver J Wang, M Di Renzo, C Williams, J Urzay, G Iaccarino Center for Turbulence Research Annual Research Briefs, 129-142, 2021 | 9 | 2021 |
Two-temperature extension of the HTR solver for hypersonic turbulent flows in thermochemical nonequilibrium C Williams, M Di Renzo, J Urzay Center for Turbulence Research Annual Research Briefs, 95-107, 2021 | 7 | 2021 |
Laser-induced indirect ignition of non-premixed turbulent shear layers JM Wang, M Di Renzo, G Iaccarino, H Wang, J Urzay Combustion and Flame 264, 113426, 2024 | 6 | 2024 |
An integrated heterogeneous computing framework for ensemble simulations of laser-induced ignition K Maeda, T Teixeira, JM Wang, J Hokanson, C Melone, M Di Renzo, ... AIAA AVIATION 2023 Forum, 3597, 2023 | 6 | 2023 |
Computational study of laser-induced modes of ignition in a coflow combustor D Passiatore, JM Wang, D Rossinelli, M Di Renzo, G Iaccarino Flow, Turbulence and Combustion, 1-25, 2024 | 5 | 2024 |