On the interpretations of joint modeling in community ecology G Poggiato, T Münkemüller, D Bystrova, J Arbel, JS Clark, W Thuiller Trends in ecology & evolution 36 (5), 391-401, 2021 | 132 | 2021 |
Novel methods to correct for observer and sampling bias in presence‐only species distribution models Y Chauvier, NE Zimmermann, G Poggiato, D Bystrova, P Brun, W Thuiller Global Ecology and Biogeography 30 (11), 2312-2325, 2021 | 40 | 2021 |
Clustering species with residual covariance matrix in joint species distribution models D Bystrova, G Poggiato, B Bektaş, J Arbel, JS Clark, A Guglielmi, ... Frontiers in Ecology and Evolution 9, 601384, 2021 | 15 | 2021 |
Bayesian mixture models (in) consistency for the number of clusters L Alamichel, D Bystrova, J Arbel, G Kon Kam King Scandinavian Journal of Statistics 51 (4), 1619-1660, 2024 | 9 | 2024 |
Causal discovery from time series with hybrids of constraint-based and noise-based algorithms D Bystrova, C Assaad, J Arbel, E Devijver, É Gaussier, W Thuiller Transactions on Machine Learning Research Journal, 2024 | 6 | 2024 |
Approximating the clusters' prior distribution in Bayesian nonparametric models D Bystrova, J Arbel, GKK King, F Deslandes AABI 2020-3rd Symposium on Advances in Approximate Bayesian Inference, 1-16, 2021 | 6 | 2021 |
Bayesian block-diagonal graphical models via the Fiedler prior J Arbel, M Beraha, D Bystrova SFdS-52 Journées de Statistique de la Société Francaise de Statistique, 1-6, 2021 | 2 | 2021 |
Latent factor models: a tool for dimension reduction in joint species distribution models D Bystrova, G Poggiato, J Arbel, W Thuiller | 2 | 2021 |
Difference graph over two populations: Implicit difference inference algorithm D Bystrova, E Devijver, V Manucharian, J Mondet, P Mossuz 9th Causal Inference Workshop at UAI 2024, 2024 | 1 | 2024 |
Hybrids of constraint-based and noise-based algorithms for causal discovery from time series CK Assaad, D Bystrova, J Arbel, E Devijver, E Gaussier, W Thuiller arXiv preprint arXiv:2306.08765, 2023 | 1 | 2023 |
Contributed discussion to" Sparse Bayesian Factor Analysis When the Number of Factors Is Unknown" by Frühwirth-Schnatter, S., Hosszejni, D., Freitas Lopes, H. L Alamichel, J Arbel, D Bystrova, G Kon Kam King, A Lanteri BAYESIAN ANALYSIS, 65-67, 2024 | | 2024 |
Causal discovery from ecological time-series with one timestamp and multiple observations D Bystrova, C Assaad, S Si-moussi, W Thuiller bioRxiv, 2024.10. 10.608447, 2024 | | 2024 |
Réduction de la dimension dans les modèles de distributions jointes d’espèces D BYSTROVA, G POGGIATO, J ARBEL, W THUILLER Approches statistiques pour les variables cachées en écologie, 151, 2022 | | 2022 |
On the consistency of Bayesian nonparametric mixtures for the number of clusters L Alamichel, D Bystrova, J Arbel, GKK King ISBA 2022-World Meeting International Society for Bayesian Analysis, 2022 | | 2022 |
Bayesian nonparametric mixtures inconsistency for the number of clusters L Alamichel, J Arbel, D Bystrova, GKK King 53es journées de Statistiques, 2022 | | 2022 |
Bekta s B, Arbel J, Clark JS, Guglielmi A and Thuiller W (2021) Clustering Species With Residual Covariance Matrix in Joint Species Distribution Models D Bystrova, G Poggiato Front. Ecol. Evol. 9: 601384. doi: 10.3389/fevo, 2021 | | 2021 |
Contributed comment on Article by Hahn, Murray, and Carvalho D Bystrova, J Arbel, T Rahier | | 2021 |