フォロー
Michael Davies
タイトル
引用先
引用先
Deep learning for flow sculpting: Insights into efficient learning using scientific simulation data
D Stoecklein, KG Lore, M Davies, S Sarkar, B Ganapathysubramanian
Scientific reports 7 (1), 46368, 2017
872017
Hierarchical feature extraction for efficient design of microfluidic flow patterns
KG Lore, D Stoecklein, M Davies, B Ganapathysubramanian, S Sarkar
Proceedings of The 1st International Workshop on “Feature Extraction: Modern …, 2015
362015
A deep learning framework for causal shape transformation
KG Lore, D Stoecklein, M Davies, B Ganapathysubramanian, S Sarkar
Neural Networks 98, 305-317, 2018
302018
Automated design for microfluid flow sculpting: multiresolution approaches, efficient encoding, and CUDA implementation
D Stoecklein, M Davies, N Wubshet, J Le, B Ganapathysubramanian
Journal of Fluids Engineering 139 (3), 031402, 2017
17*2017
The Mozart reuse exposed dataflow processor for AI and beyond: Industrial product
K Sankaralingam, T Nowatzki, V Gangadhar, P Shah, M Davies, ...
Proceedings of the 49th Annual International Symposium on Computer …, 2022
122022
FlowSculpt: Software for efficient design of inertial flow sculpting devices
D Stoecklein, M Davies, JM de Rutte, CY Wu, D Di Carlo, ...
Lab on a Chip 19 (19), 3277-3291, 2019
122019
Optimizing isotope substitution in graphene for thermal conductivity minimization by genetic algorithm driven molecular simulations
M Davies, B Ganapathysubramanian, G Balasubramanian
Applied Physics Letters 110 (13), 2017
102017
LookupFFN: making transformers compute-lite for CPU inference
Z Zeng, M Davies, P Pulijala, K Sankaralingam, V Singh
International Conference on Machine Learning, 40707-40718, 2023
52023
A Journey of a 1,000 Kernels Begins with a Single Step: A Retrospective of Deep Learning on GPUs
M Davies, I McDougall, S Anandaraj, D Machchhar, R Jain, ...
Proceedings of the 29th ACM International Conference on Architectural …, 2024
32024
Deep action sequence learning for causal shape transformation
KG Lore, D Stoecklein, M Davies, B Ganapathysubramanian, S Sarkar
arXiv preprint arXiv:1605.05368, 2016
32016
ARMOR: A recompilation and instrumentation-free monitoring architecture for detecting memory exploits
A Grieve, M Davies, PH Jones, J Zambreno
IEEE Transactions on Computers 67 (8), 1092-1104, 2018
22018
Violet: Architecturally Exposed Orchestration, Movement, and Placement for Generalized Deep Learning
M Davies, K Sankaralingam
arXiv preprint arXiv:2112.02204, 2021
12021
Assigning workloads to physical resources in spatial architectures
DCB Fanny Nina Paravecino, Michael Eric Davies, Abhishek Dilip Kulkarni, Md ...
2024
Composable Architecture Primitives for the Era of Efficient Generalization
ME Davies
The University of Wisconsin-Madison, 2024
2024
BRYT: Data Rich Analytics Based Computer Architecture for A New Paradigm of Chip Design to Supplant Moore's Law
I McDougall, S Wadle, H Batchu, M Davies, K Sankaralingam
arXiv preprint arXiv:2312.13428, 2023
2023
Understanding the Limits of Conventional Hardware Architectures for Deep-Learning.
M Davies, A Labiosa, K Sankaralingam
CoRR, 2021
2021
Space-Time Finite Elements
M Davies
2017
Deep Learning for Engineering Big Data Analytics
KG Lore, D Stoecklein, M Davies, B Ganapathysubramanian, S Sarkar
Big Data Analytics: Tools and Technology for Effective Planning, 151, 2017
2017
Deep Action Sequence Learning for Causal Shape Transformation
K Gwn Lore, D Stoecklein, M Davies, B Ganapathysubramanian, S Sarkar
arXiv e-prints, arXiv: 1605.05368, 2016
2016
FlowSculpt: software for efficient design of inertial flow sculpting devices Supplementary Information
D Stoecklein, M Davies, J de Rutteb, CY Wub, D Di Carlo, ...
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20