Invariance properties of random vectors and stochastic processes based on the zonoid concept I Molchanov, M Schmutz, K Stucki | 28 | 2014 |
Gibbs point process approximation: total variation bounds using Stein’s method D Schuhmacher, K Stucki | 20 | 2014 |
Bounds for the probability generating functional of a Gibbs point process K Stucki, D Schuhmacher Advances in applied probability 46 (1), 21-34, 2014 | 20 | 2014 |
Stationarity of multivariate particle systems I Molchanov, K Stucki Stochastic Processes and their Applications 123 (6), 2272-2285, 2013 | 17 | 2013 |
Continuum percolation for Gibbs point processes K Stucki | 16 | 2013 |
Corrigendum to “Stationarity of multivariate particle systems”[Stochastic Process. Appl. 123 (6)(2013) 2272–2285] I Molchanov, K Stucki Stochastic Processes and their Applications 4 (124), 1740, 2014 | | 2014 |
Invariance Properties and Approximation Resuts for Point Processes K Stucki Fakultät für Mathematik und Informatik Georg-August-Universität Göttingen, 2013 | | 2013 |
Stein’s method for Gibbs point processes K Stucki | | |