Extraction of tourist destinations and comparative analysis of preferences between foreign tourists and domestic tourists on the basis of geotagged social media data TN Maeda, M Yoshida, F Toriumi, H Ohashi ISPRS International Journal of Geo-Information 7 (3), 99, 2018 | 50 | 2018 |
RCD: Repetitive causal discovery of linear non-Gaussian acyclic models with latent confounders TN Maeda, S Shimizu International Conference on Artificial Intelligence and Statistics, 735-745, 2020 | 44 | 2020 |
Python package for causal discovery based on LiNGAM T Ikeuchi, M Ide, Y Zeng, TN Maeda, S Shimizu Journal of Machine Learning Research 24 (14), 1-8, 2023 | 25 | 2023 |
Causal additive models with unobserved variables TN Maeda, S Shimizu Uncertainty in Artificial Intelligence, 97-106, 2021 | 24 | 2021 |
Detecting and understanding urban changes through decomposing the numbers of visitors’ arrivals using human mobility data TN Maeda, N Shiode, C Zhong, J Mori, T Sakimoto Journal of Big Data 6, 1-25, 2019 | 23 | 2019 |
Decision tree analysis of tourists' preferences regarding tourist attractions using geotag data from social media TN Maeda, M Yoshida, F Toriumi, H Ohashi Proceedings of the Second International Conference on IoT in Urban Space, 61-64, 2016 | 21 | 2016 |
Comparative examination of network clustering methods for extracting community structures of a city from public transportation smart card data TN Maeda, J Mori, I Hayashi, T Sakimoto, I Sakata IEEE Access 7, 53377-53391, 2019 | 15 | 2019 |
The economic value of urban landscapes in a suburban city of Tokyo, Japan: A semantic segmentation approach using Google Street View images M Suzuki, J Mori, TN Maeda, J Ikeda Journal of Asian Architecture and Building Engineering 22 (3), 1110-1125, 2023 | 12 | 2023 |
Next place prediction in unfamiliar places considering contextual factors TN Maeda, K Tsubouch, F Toriumi The 25th ACM SIGSPATIAL International Conference on Advances in Geographic …, 2017 | 11 | 2017 |
Repetitive causal discovery of linear non-Gaussian acyclic models in the presence of latent confounders TN Maeda, S Shimizu International Journal of Data Science and Analytics, 1-13, 2022 | 6 | 2022 |
前田高志ニコラス, 三内顕義, 清水昌平, 星野利彦: EBPM と統計的因果探索・数理モデルの利活用 高山正行, 小柴 研究・イノベーション学会 第 36 回年次学術大会 (予稿集)., 公演番号 2G02, 2021 | 6 | 2021 |
Measurement of Opportunity Cost of Travel Time for Predicting Future Residential Mobility Based on the Smart Card Data of Public Transportation TN Maeda, J Mori, M Ochi, T Sakimoto, I Sakata ISPRS International Journal of Geo-Information 7 (11), 416, 2018 | 5 | 2018 |
前田高志ニコラス, 三内顕義, 清水昌平, 星野利彦: 博士課程進学率に関する因果モデルの構築: 統計的因果探索アルゴリズム “LiNGAM” による試行的分析 高山正行, 小柴 Jxiv preprint, 2022 | 4 | 2022 |
Causal discovery of linear non-Gaussian acyclic models in the presence of latent confounders TN Maeda, S Shimizu arXiv preprint arXiv:2001.04197, 2020 | 4 | 2020 |
I-RCD: an improved algorithm of repetitive causal discovery from data with latent confounders TN Maeda Behaviormetrika 49 (2), 329-341, 2022 | 3 | 2022 |
Analysis of smart card data for understanding spatial changes in consumption-oriented human flows TN Maeda, J Mori, F Toriumi, H Ohashi Proceedings of the 2nd ACM SIGSPATIAL Workshop on Smart Cities and Urban …, 2016 | 3 | 2016 |
統計的因果探索アルゴリズム “LiNGAM” を用いた若手研究者支援政策に関する研究 高山正行, 小柴, 前田高志, 三内顕義, 清水昌平, 星野利彦 研究・イノベーション学会, 2021 | 2 | 2021 |
Discovery of causal additive models in the presence of unobserved variables TN Maeda, S Shimizu arXiv preprint arXiv:2106.02234, 2021 | 2 | 2021 |
Use of prior knowledge to discover causal additive models with unobserved variables and its application to time series data TN Maeda, S Shimizu Behaviormetrika, 1-19, 2024 | 1 | 2024 |
Causal Discovery with Hidden Variables Based on Non-Gaussianity and Nonlinearity TN Maeda, Y Zeng, S Shimizu Dependent data in social sciences research: Forms, issues, and methods of …, 2024 | 1 | 2024 |