フォロー
Jordan Richards
Jordan Richards
Lecturer of Statistics, University of Edinburgh
確認したメール アドレス: ed.ac.uk - ホームページ
タイトル
引用先
引用先
Modelling extremes of spatial aggregates of precipitation using conditional methods
J Richards, JA Tawn, S Brown
The Annals of Applied Statistics 16 (4), 2693-2713, 2022
292022
Regression modelling of spatiotemporal extreme US wildfires via partially-interpretable neural networks
J Richards, R Huser
arXiv preprint arXiv:2208.07581, 2022
22*2022
Neural Bayes estimators for irregular spatial data using graph neural networks
M Sainsbury-Dale, A Zammit-Mangion, J Richards, R Huser
Journal of Computational and Graphical Statistics, 1-28, 2024
202024
Deep graphical regression for jointly moderate and extreme Australian wildfires
D Cisneros, J Richards, A Dahal, L Lombardo, R Huser
Spatial Statistics, 100811, 2024
202024
Neural Bayes estimators for censored inference with peaks-over-threshold models
J Richards, M Sainsbury-Dale, A Zammit-Mangion, R Huser
Journal of Machine Learning Research 25 (390), 1-49, 2024
20*2024
Spatial deformation for nonstationary extremal dependence
J Richards, JL Wadsworth
Environmetrics 32 (5), e2671, 2021
192021
Joint estimation of extreme spatially aggregated precipitation at different scales through mixture modelling
J Richards, JA Tawn, S Brown
Spatial Statistics 53, 100725, 2023
172023
Insights into the drivers and spatiotemporal trends of extreme mediterranean wildfires with statistical deep learning
J Richards, R Huser, E Bevacqua, J Zscheischler
Artificial Intelligence for the Earth Systems 2 (4), e220095, 2023
152023
On the tail behaviour of aggregated random variables
J Richards, JA Tawn
Journal of Multivariate Analysis 192, 105065, 2022
62022
Flexible Modeling of Nonstationary Extremal Dependence using Spatially Fused LASSO and Ridge Penalties
X Shao, A Hazra, J Richards, R Huser
Technometrics, 1-15, 2024
42024
PinnEV: Partially-interpretable neural networks for modelling of extreme values
J Richards
R package, 2022
42022
Deep learning of multivariate extremes via a geometric representation
CJR Murphy-Barltrop, R Majumder, J Richards
arXiv preprint arXiv:2406.19936, 2024
22024
Extreme quantile regression with deep learning
J Richards, R Huser
arXiv preprint arXiv:2404.09154, 2024
22024
Extremes of Aggregated Random Variables and Spatial Processes
J Richards
PQDT-Global, 2021
22021
Partially interpretable neural networks for high-dimensional extreme quantile regression: With application to wildfires within the Mediterranean Basin
J Richards, R Huser, E Bevacqua, J Zscheischler
EGU General Assembly Conference Abstracts, EGU22-2179, 2022
12022
Deep learning joint extremes of metocean variables using the SPAR model
E Mackay, C Murphy-Barltrop, J Richards, P Jonathan
arXiv preprint arXiv:2412.15808, 2024
2024
Jordan Richards, Myung Won Lee, Viviana Carcaiso, and Miguel de Carvalho's contribution to the Discussion of “Inference for extreme spatial temperature events in a changing …
J Richards, MW Lee, V Carcaiso, M de Carvalho
Journal of the Royal Statistical Society Series C: Applied Statistics, qlae084, 2024
2024
Review of “Risk Revealed: Cautionary Tales, Understanding and Communication” by Paul Embrechts, Marius Hofert, and Valérie Chavez-Demoulin
J Richards, L De Monte
Journal of Agricultural, Biological and Environmental Statistics, 1-3, 2024
2024
Modern extreme value statistics for Utopian extremes. EVA (2023) Conference Data Challenge: Team Yalla
J Richards, N Alotaibi, D Cisneros, Y Gong, MB Guerrero, PV Redondo, ...
Extremes, 1-23, 2024
2024
The Efficient Tail Hypothesis: An Extreme Value Perspective on Market Efficiency
J Jiang, J Richards, R Huser, D Bolin
arXiv preprint arXiv:2408.06661, 2024
2024
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20