フォロー
Seungho Lee
Seungho Lee
確認したメール アドレス: yonsei.ac.kr
タイトル
引用先
引用先
Railroad is not a train: Saliency as pseudo-pixel supervision for weakly supervised semantic segmentation
S Lee, M Lee, J Lee, H Shim
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
2852021
Evaluating weakly supervised object localization methods right
J Choe, SJ Oh, S Lee, S Chun, Z Akata, H Shim
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
2282020
Evaluation for weakly supervised object localization: Protocol, metrics, and datasets
J Choe, SJ Oh, S Chun, S Lee, Z Akata, H Shim
IEEE transactions on pattern analysis and machine intelligence 45 (2), 1732-1748, 2022
332022
Saliency as pseudo-pixel supervision for weakly and semi-supervised semantic segmentation
M Lee, S Lee, J Lee, H Shim
IEEE transactions on pattern analysis and machine intelligence 45 (10 …, 2023
152023
Learning from better supervision: Self-distillation for learning with noisy labels
K Baek, S Lee, H Shim
2022 26th International Conference on Pattern Recognition (ICPR), 1829-1835, 2022
62022
Weakly Supervised Semantic Segmentation for Driving Scenes
D Kim, S Lee, J Choe, H Shim
Proceedings of the AAAI Conference on Artificial Intelligence 38 (3), 2741-2749, 2024
42024
Understanding Multi-Granularity for Open-Vocabulary Part Segmentation
J Choi, S Lee, S Lee, M Lee, H Shim
NeurIPS (Conference on Neural Information Processing Systems), 2024
12024
Fine-Grained Image-Text Correspondence with Cost Aggregation for Open-Vocabulary Part Segmentation
J Choi, S Lee, M Lee, S Lee, H Shim
arXiv preprint arXiv:2501.09688, 2025
2025
MaskRIS: Semantic Distortion-aware Data Augmentation for Referring Image Segmentation
M Lee, S Lee, S Park, D Han, B Heo, H Shim
arXiv preprint arXiv:2411.19067, 2024
2024
Learning from Spatio-temporal Correlation for Semi-Supervised LiDAR Semantic Segmentation
S Lee, H Lee, H Shim
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2024
2024
Self-Supervised Vision Transformers Are Efficient Segmentation Learners for Imperfect Labels
S Lee, S Kang, H Shim
AAAI2024: Edge Intelligence Workshop on Large Language and Vision Model, 2024
2024
Weakly supervised semantic segmentation device and method based on pseudo-masks
H Shim, S Lee, M Lee
US Patent 11,798,171, 2023
2023
Attention-Based Dropout Layer for Weakly Supervised Single Object Localization and Semantic Segmentation
J Choe, S Lee, H Shim
IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (12), 4256 …, 2021
2021
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–13