팔로우
Jan Žegklitz
Jan Žegklitz
České vysoké učení technické, Fakulta elektrotechnická
fel.cvut.cz의 이메일 확인됨
제목
인용
인용
연도
Benchmarking state-of-the-art symbolic regression algorithms
J Žegklitz, P Pošík
Genetic programming and evolvable machines 22 (1), 5-33, 2021
502021
Symbolic regression methods for reinforcement learning
J Kubalík, E Derner, J Žegklitz, R Babuška
IEEE Access 9, 139697-139711, 2021
372021
Innovative default prediction approach
J Bemš, O Starý, M Macaš, J Žegklitz, P Pošík
Expert Systems with Applications 42 (17-18), 6277-6285, 2015
222015
Model selection and overfitting in genetic programming: Empirical study
J Žegklitz, P Pošík
Proceedings of the Companion Publication of the 2015 Annual Conference on …, 2015
152015
Symbolic regression algorithms with built-in linear regression
J Žegklitz, P Pošík
arXiv preprint arXiv:1701.03641, 2017
122017
Hybrid single node genetic programming for symbolic regression
J Kubalík, E Alibekov, J Žegklitz, R Babuška
Transactions on Computational Collective Intelligence XXIV, 61-82, 2016
122016
Symbolic regression in dynamic scenarios with gradually changing targets
J Žegklitz, P Pošík
Applied Soft Computing 83, 105621, 2019
82019
Linear combinations of features as leaf nodes in symbolic regression
J Žegklitz, P Pošík
Proceedings of the Genetic and Evolutionary Computation Conference Companion …, 2017
82017
Control of Magnetic Manipulator Using Reinforcement Learning Based on Incrementally Adapted Local Linear Models
M Brablc, J Žegklitz, R Grepl, R Babuška
Complexity 2021 (1), 6617309, 2021
32021
Symbolic regression by grammar-based multi-gene genetic programming
J Žegklitz, P Pošík
Proceedings of the companion Publication of the 2015 Annual Conference on …, 2015
22015
Sequential Model Building in Symbolic Regression
J Žegklitz, P Pošík
12019
Learning Linear Feature Space Transformations in Symbolic Regression
J Žegklitz, P Pošík
arXiv preprint arXiv:1704.05134, 2017
12017
Vylepšení Algoritmů pro Symbolickou Regresi Založených na Genetickém Programování/Enhancements of Genetic Programming-based Symbolic Regression Algorithms
J Žegklitz
Czech Technical University, 2021
2021
Vylepšení Algoritmů pro Symbolickou Regresi Založených na Genetickém Programování
J Žegklitz
PQDT-Global, 2021
2021
Hybridization of Evolutionary Algorithms Using Different Evaluation Approaches
J Žegklitz
České vysoké učení technické v Praze. Vypočetní a informační centrum., 2013
2013
Aplikace algoritmu NEAT pro zpracování zvukových signálů
J Žegklitz
České vysoké učení technické v Praze. Vypočetní a informační centrum., 2011
2011
Combining Subtree and Ripple Crossover in Grammatical Evolution
J Žegklitz, P Pošík
현재 시스템이 작동되지 않습니다. 나중에 다시 시도해 주세요.
학술자료 1–17