팔로우
Pascal Sturmfels
Pascal Sturmfels
cs.washington.edu의 이메일 확인됨 - 홈페이지
제목
인용
인용
연도
Generalized biomolecular modeling and design with RoseTTAFold All-Atom
R Krishna, J Wang, W Ahern, P Sturmfels, P Venkatesh, I Kalvet, GR Lee, ...
Science 384 (6693), eadl2528, 2024
3802024
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G Erion, JD Janizek, P Sturmfels, SM Lundberg, SI Lee
Nature machine intelligence 3 (7), 620-631, 2021
347*2021
Visualizing the impact of feature attribution baselines
P Sturmfels, S Lundberg, SI Lee
Distill 5 (1), e22, 2020
301*2020
Explaining explanations: Axiomatic feature interactions for deep networks
JD Janizek, P Sturmfels, SI Lee
Journal of Machine Learning Research 22 (104), 1-54, 2021
1772021
Automated brain masking of fetal functional MRI with open data
S Rutherford, P Sturmfels, M Angstadt, J Hect, J Wiens, ...
Neuroinformatics 20 (1), 173-185, 2022
48*2022
A domain guided CNN architecture for predicting age from structural brain images
P Sturmfels, S Rutherford, M Angstadt, M Peterson, C Sripada, J Wiens
Machine learning for healthcare conference, 295-311, 2018
322018
FoggySight: a scheme for facial lookup privacy
I Evtimov, P Sturmfels, T Kohno
Proceedings on Privacy Enhancing Technologies 3, 204-226, 2021
302021
Profile prediction: An alignment-based pre-training task for protein sequence models
P Sturmfels, J Vig, A Madani, NF Rajani
arXiv preprint arXiv:2012.00195, 2020
232020
Unified AI framework to uncover deep interrelationships between gene expression and Alzheimer’s disease neuropathologies
N Beebe-Wang, S Celik, E Weinberger, P Sturmfels, PL De Jager, ...
Nature Communications 12 (1), 5369, 2021
222021
Select and permute: An improved online framework for scheduling to minimize weighted completion time
S Khuller, J Li, P Sturmfels, K Sun, P Venkat
Theoretical Computer Science 795, 420-431, 2019
202019
The Lair: a resource for exploratory analysis of published RNA-Seq data
H Pimentel, P Sturmfels, N Bray, P Melsted, L Pachter
BMC bioinformatics 17, 1-6, 2016
202016
Seq2MSA: A Language Model for Protein Sequence Diversification
P Sturmfels, R Rao, R Verkuil, Z Lin, O Kabeli, T Sercu, A Lerer, A Rives
MLSB Workshop (NeurIPS), 2022
22022
Explainable Machine Learning and Applications in Protein-Ligand Complex Structure Prediction
P Sturmfels, D Baker, S Wang, F Dimaio
2024
Systems and methods for alignment-based pre-training of protein prediction models
P Sturmfels, A Madani, J Vig, N Rajani
US Patent App. 17/153,164, 2022
2022
현재 시스템이 작동되지 않습니다. 나중에 다시 시도해 주세요.
학술자료 1–14