팔로우
David Eriksson
David Eriksson
Research Scientist Manager
meta.com의 이메일 확인됨 - 홈페이지
제목
인용
인용
연도
Scalable global optimization via local Bayesian optimization
D Eriksson, M Pearce, J Gardner, RD Turner, M Poloczek
Advances in neural information processing systems 32, 2019
5922019
Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020
R Turner, D Eriksson, M McCourt, J Kiili, E Laaksonen, Z Xu, I Guyon
NeurIPS 2020 Competition and Demonstration Track, 3-26, 2021
4262021
High-dimensional Bayesian optimization with sparse axis-aligned subspaces
D Eriksson, M Jankowiak
Uncertainty in Artificial Intelligence, 493-503, 2021
1712021
Scalable constrained Bayesian optimization
D Eriksson, M Poloczek
International conference on artificial intelligence and statistics, 730-738, 2021
1392021
Multi-objective bayesian optimization over high-dimensional search spaces
S Daulton, D Eriksson, M Balandat, E Bakshy
Uncertainty in Artificial Intelligence, 507-517, 2022
1262022
Scalable log determinants for Gaussian process kernel learning
K Dong, D Eriksson, H Nickisch, D Bindel, AG Wilson
Advances in Neural Information Processing Systems 30, 2017
1142017
Scaling Gaussian process regression with derivatives
D Eriksson, K Dong, E Lee, D Bindel, AG Wilson
Advances in neural information processing systems 31, 2018
1052018
pySOT and POAP: An event-driven asynchronous framework for surrogate optimization
D Eriksson, D Bindel, CA Shoemaker
arXiv preprint arXiv:1908.00420, 2019
942019
Unexpected improvements to expected improvement for bayesian optimization
S Ament, S Daulton, D Eriksson, M Balandat, E Bakshy
Advances in Neural Information Processing Systems 36, 20577-20612, 2023
622023
Fast matrix square roots with applications to Gaussian processes and Bayesian optimization
G Pleiss, M Jankowiak, D Eriksson, A Damle, J Gardner
Advances in neural information processing systems 33, 22268-22281, 2020
612020
Bayesian optimization over discrete and mixed spaces via probabilistic reparameterization
S Daulton, X Wan, D Eriksson, M Balandat, MA Osborne, E Bakshy
Advances in Neural Information Processing Systems 35, 12760-12774, 2022
512022
Continental hydrology loading observed by VLBI measurements
D Eriksson, DS MacMillan
Journal of Geodesy 88 (7), 675-690, 2014
432014
Tropospheric delay ray tracing applied in VLBI analysis
D Eriksson, DS MacMillan, JM Gipson
Journal of Geophysical Research: Solid Earth 119 (12), 9156-9170, 2014
362014
A nonmyopic approach to cost-constrained Bayesian optimization
EH Lee, D Eriksson, V Perrone, M Seeger
Uncertainty in Artificial Intelligence, 568-577, 2021
342021
Efficient rollout strategies for Bayesian optimization
E Lee, D Eriksson, D Bindel, B Cheng, M Mccourt
Conference on Uncertainty in Artificial Intelligence, 260-269, 2020
292020
Discovering many diverse solutions with Bayesian optimization
N Maus, K Wu, D Eriksson, J Gardner
arXiv preprint arXiv:2210.10953, 2022
242022
Latency-aware neural architecture search with multi-objective bayesian optimization
D Eriksson, PIJ Chuang, S Daulton, P Xia, A Shrivastava, A Babu, S Zhao, ...
arXiv preprint arXiv:2106.11890, 2021
162021
Bayesian optimization over high-dimensional combinatorial spaces via dictionary-based embeddings
A Deshwal, S Ament, M Balandat, E Bakshy, JR Doppa, D Eriksson
International Conference on Artificial Intelligence and Statistics, 7021-7039, 2023
152023
Surrogate optimization toolbox (pysot)
D Eriksson, D Bindel, C Shoemaker
URL: github. com/dme65/pySOT, 2015
152015
Sparse bayesian optimization
S Liu, Q Feng, D Eriksson, B Letham, E Bakshy
International Conference on Artificial Intelligence and Statistics, 3754-3774, 2023
112023
현재 시스템이 작동되지 않습니다. 나중에 다시 시도해 주세요.
학술자료 1–20