Learning Anytime Predictions in Neural Networks via Adaptive Loss Balancing H Hu, D Dey, M Hebert, JA Bagnell | 123* | 2018 |
Efficient 3-d scene analysis from streaming data H Hu, D Munoz, JA Bagnell, M Hebert 2013 IEEE international conference on robotics and automation, 2297-2304, 2013 | 77 | 2013 |
Efficient forward architecture search H Hu, J Langford, R Caruana, S Mukherjee, EJ Horvitz, D Dey Advances in Neural Information Processing Systems 32, 2019 | 44 | 2019 |
Log-densenet: How to sparsify a densenet H Hu, D Dey, A Del Giorno, M Hebert, JA Bagnell arXiv preprint arXiv:1711.00002, 2017 | 43 | 2017 |
Gradient boosting on stochastic data streams H Hu, W Sun, A Venkatraman, M Hebert, A Bagnell Artificial Intelligence and Statistics, 595-603, 2017 | 20 | 2017 |
Efficient feature group sequencing for anytime linear prediction H Hu, A Grubb, JA Bagnell, M Hebert arXiv preprint arXiv:1409.5495, 2014 | 16 | 2014 |
Macro neural architecture search revisited H Hu, J Langford, R Caruana, E Horvitz, D Dey 2nd Workshop on Meta-Learning at NeurIPS, 2018 | 14 | 2018 |
Automated generation of machine learning models D Dey, HU Hanzhang, RA Caruana, JC Langford, EJ Horvitz US Patent App. 18/080,407, 2023 | | 2023 |
Anytime Prediction and Learning for the Balance between Computation and Accuracy H Hu Carnegie Mellon University, 2019 | | 2019 |
16-831 Final Report: Online Anomaly Detection in Videos A Del Giorno, H Hu, N Rhinehart | | 2014 |
ALI, Alnur CMU-ML-19-105 CARD, Dallas CMU-ML-19-109 DANN, Christoph CMU-ML-19-116 DOWNEY, Carlton CMU-ML-19-107 SS DU, H HU, B HOOI, E LEI, CL LI, C McCARTER, W NEISWANGER, ... | | |
2019 Theses by Author A ALI, D CARD, C DANN, C DOWNEY, SS DU, B HOOI, H HU, E LEI, ... | | |