팔로우
Wessel Bruinsma
Wessel Bruinsma
Microsoft Research AI for Science Amsterdam
microsoft.com의 이메일 확인됨 - 홈페이지
제목
인용
인용
연도
Convolutional Conditional Neural Processes
J Gordon, WP Bruinsma, AYK Foong, J Requeima, Y Dubois, RE Turner
International Conference on Learning Representations (ICLR), 8th, 2020
1812020
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
AYK Foong, WP Bruinsma, J Gordon, Y Dubois, J Requeima, RE Turner
Advances in Neural Information Processing Systems (NeurIPS), 33th, 2020
772020
A Foundation Model for the Earth System
C Bodnar, WP Bruinsma, A Lucic, M Stanley, A Vaughan, J Brandstetter, ...
arXiv preprint arXiv:2405.13063, 2024
56*2024
The Gaussian Process Autoregressive Regression Model (GPAR)
J Requeima, W Tebbutt, W Bruinsma, RE Turner
Artificial Intelligence and Statistics (AISTATS), 22nd International …, 2019
502019
Scalable Exact Inference in Multi-Output Gaussian Processes
W Bruinsma, E Perim, W Tebbutt, S Hosking, A Solin, R Turner
International Conference on Machine Learning (ICML), 37th, 2020
412020
The Gaussian Neural Process
WP Bruinsma, J Requeima, AYK Foong, J Gordon, RE Turner
Advances in Approximate Bayesian Inference (AABI), 3rd Symposium on, 2021
362021
How Tight Can PAC-Bayes be in the Small Data Regime?
AYK Foong, WP Bruinsma, DR Burt, RE Turner
Advances in Neural Information Processing Systems (NeurIPS), 35th, 2021
322021
Autoregressive Conditional Neural Processes
WP Bruinsma, S Markou, J Requiema, AYK Foong, TR Andersson, ...
International Conference on Learning Representations (ICLR), 11th, 2023
282023
Practical Conditional Neural Process Via Tractable Dependent Predictions
S Markou, J Requeima, W Bruinsma, A Vaughan, RE Turner
International Conference on Learning Representations (ICLR), 10th, 2022
262022
Wide Mean-Field Bayesian Neural Networks Ignore the Data
B Coker, WP Bruinsma, DR Burt, W Pan, F Doshi-Velez
Artificial Intelligence and Statistics (AISTATS), 25th International …, 2022
232022
Efficient Gaussian Neural Processes for Regression
S Markou, J Requeima, W Bruinsma, R Turner
Uncertainty & Robustness in Deep Learning (UDL), ICML 2021 Workshop on, 2021
132021
Environmental Sensor Placement with Convolutional Gaussian Neural Processes
TR Andersson, WP Bruinsma, S Markou, J Requeima, A Coca-Castro, ...
Environmental Data Science 2, e32, 2023
122023
Modelling Non-Smooth Signals with Complex Spectral Structure
WP Bruinsma, M Tegnér, RE Turner
International Conference on Artificial Intelligence and Statistics, 5166-5195, 2022
112022
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
V Lalchand, WP Bruinsma, DR Burt, CE Rasmussen
Advances in Neural Information Processing Systems (NeurIPS), 36th, 2022
92022
Aardvark Weather: End-to-End Data-Driven Weather Forecasting
A Vaughan, S Markou, W Tebbutt, J Requeima, WP Bruinsma, ...
arXiv preprint arXiv:2404.00411, 2024
62024
Challenges and Pitfalls of Bayesian Unlearning
A Rawat, J Requeima, W Bruinsma, R Turner
Updatable Machine Learning (UpML), ICML 2022 Workshop on, 2022
52022
A Note on the Chernoff Bound for Random Variables in the Unit Interval
AYK Foong, WP Bruinsma, DR Burt
arXiv preprint arXiv:2205.07880, 2022
42022
The Generalised Gaussian Process Convolution Model
W Bruinsma
42016
Active Learning with Convolutional Gaussian Neural Processes for Environmental Sensor Placement
TR Andersson, WP Bruinsma, S Markou, DC Jones, JS Hosking, ...
Environmental Data Science (Climate Informatics 2023 Special Issue), 2023
32023
The Gaussian Process Latent Autoregressive Model
R Xia, W Bruinsma, W Tebbutt, RE Turner
Advances in Approximate Bayesian Inference (AABI), 3rd Symposium on., 2020
32020
현재 시스템이 작동되지 않습니다. 나중에 다시 시도해 주세요.
학술자료 1–20