Quantum supergroups I. foundations S Clark, D Hill, W Wang Transformation Groups 18 (4), 1019-1053, 2013 | 36 | 2013 |
Canonical basis for quantum S Clark, W Wang Letters in Mathematical Physics 103 (2), 207-231, 2013 | 35 | 2013 |
Quantum supergroups III. Twistors S Clark, Z Fan, Y Li, W Wang Communications in Mathematical Physics 332, 415-436, 2014 | 31 | 2014 |
Quantum supergroups II. Canonical basis S Clark, D Hill, W Wang arXiv preprint arXiv:1304.7837, 2013 | 31 | 2013 |
Quantum shuffles and quantum supergroups of basic type S Clark, D Hill, W Wang Quantum Topology 7 (3), 553-638, 2016 | 24 | 2016 |
Quantum supergroups IV: the modified form S Clark Mathematische Zeitschrift 278, 493-528, 2014 | 15 | 2014 |
Quantum supergroups V. Braid group action S Clark, D Hill Communications in Mathematical Physics 344, 25-65, 2016 | 9 | 2016 |
Schur multiplicative maps on matrices S Clark, CK Li, A Rastogi Bulletin of the Australian Mathematical Society 77 (1), 49-72, 2008 | 9 | 2008 |
Spectral radius preservers of products of monnegative matrices S Clark, CK Li, L Rodman Banach Journal of Mathematical Analysis 2 (2), 107-120, 2008 | 9 | 2008 |
Odd knot invariants from quantum covering groups S Clark Algebraic & Geometric Topology 17 (5), 2961-3005, 2017 | 8 | 2017 |
Super tableaux and a branching rule for the general linear Lie superalgebra S Clark, YN Peng, SK Thamrongpairoj Linear and Multilinear Algebra 63 (2), 274-282, 2015 | 8 | 2015 |
Linear preservers of higher rank numerical ranges and radii S Clark, CK Li, J Mahle, L Rodman International Journal of Control 57 (5), 503-521, 2009 | 8 | 2009 |
Canonical bases for the quantum enveloping algebra of gl (m| 1) and its modules S Clark arXiv preprint arXiv:1605.04266, 2016 | 7 | 2016 |
Canonical Basis for Quantum . S Clark, W Wang Letters in Mathematical Physics 103 (2), 2013 | 6 | 2013 |
Multiplicative maps preserving the higher rank numerical ranges and radii S Clark, CK Li, NS Sze Linear Algebra and its Applications 432 (11), 2729-2738, 2010 | 6 | 2010 |
Quantum osp (1| 2n) knot invariants are the same as quantum so (2n+ 1) knot invariants S Clark arXiv preprint arXiv:1509.03533, 2015 | 4 | 2015 |
Special session on “Geometric and Algebraic Aspects of Representation Theory” organized by Pramod Achar and Dijana Jakelic B Boe, S Clark, B Cox Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry …, 2014 | | 2014 |
Quantum supergroups and canonical bases S Clark University of Virginia, 2014 | | 2014 |
BRAID GROUP ACTIONS ON QUANTUM KAC-MOODY SUPERALGEBRAS S CLARK, D HILL mij 2 (3), 4-6, 2013 | | 2013 |
Canonical Basis for Quantum [FORMULA] S Clark, W Wang Letters in mathematical physics 103 (2), 207-231, 2013 | | 2013 |