A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation D Han, X Wang Journal of Computational Physics 290, 139-156, 2015 | 211 | 2015 |
Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model X Yang, D Han Journal of Computational Physics 330, 1116-1134, 2017 | 180 | 2017 |
Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two-phase incompressible flows D Han, A Brylev, X Yang, Z Tan Journal of Scientific Computing 70, 965-989, 2017 | 110 | 2017 |
Two‐phase flows in karstic geometry D Han, D Sun, X Wang Mathematical Methods in the Applied Sciences 37 (18), 3048-3063, 2014 | 57 | 2014 |
Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry D Han, X Wang, H Wu Journal of Differential Equations 257 (10), 3887-3933, 2014 | 55 | 2014 |
A decoupled unconditionally stable numerical scheme for the Cahn–Hilliard–Hele-Shaw system D Han Journal of Scientific Computing 66, 1102-1121, 2016 | 41 | 2016 |
A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn–Hilliard–Darcy system D Han, X Wang Journal of Scientific Computing 77, 1210-1233, 2018 | 40 | 2018 |
Boundary layer for a class of nonlinear pipe flow D Han, AL Mazzucato, D Niu, X Wang Journal of Differential Equations 252 (12), 6387-6413, 2012 | 35 | 2012 |
Decoupled energy‐law preserving numerical schemes for the C ahn–H illiard–D arcy system D Han, X Wang Numerical Methods for Partial Differential Equations 32 (3), 936-954, 2016 | 32 | 2016 |
Uniquely solvable and energy stable decoupled numerical schemes for the Cahn–Hilliard–Stokes–Darcy system for two-phase flows in karstic geometry W Chen, D Han, X Wang Numerische Mathematik 137 (1), 229-255, 2017 | 31 | 2017 |
Second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations J Zhao, D Han Journal of Computational Physics 443, 110536, 2021 | 29 | 2021 |
Error estimate of a decoupled numerical scheme for the Cahn–Hilliard–Stokes–Darcy system W Chen, S Wang, Y Zhang, D Han, C Wang, X Wang IMA journal of numerical analysis 42 (3), 2621-2655, 2022 | 28 | 2022 |
Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities Y Gao, D Han, X He, U Rüde Journal of Computational Physics 454, 110968, 2022 | 24 | 2022 |
Deformation and coalescence of ferrodroplets in Rosensweig model using the phase field and modified level set approaches under uniform magnetic fields F Bai, D Han, X He, X Yang Communications in Nonlinear Science and Numerical Simulation 85, 105213, 2020 | 20 | 2020 |
Existence and weak–strong uniqueness of solutions to the Cahn–Hilliard–Navier–Stokes–Darcy system in superposed free flow and porous media D Han, X He, Q Wang, Y Wu Nonlinear Analysis 211, 112411, 2021 | 17 | 2021 |
Dynamic transitions and bifurcations for thermal convection in the superposed free flow and porous media D Han, Q Wang, X Wang Physica D: Nonlinear Phenomena 414, 132687, 2020 | 17 | 2020 |
Dynamical transitions of a low-dimensional model for Rayleigh–Bénard convection under a vertical magnetic field D Han, M Hernandez, Q Wang Chaos, Solitons & Fractals 114, 370-380, 2018 | 16 | 2018 |
A linear second-order in time unconditionally energy stable finite element scheme for a Cahn–Hilliard phase-field model for two-phase incompressible flow of variable densities G Fu, D Han Computer Methods in Applied Mechanics and Engineering 387, 114186, 2021 | 15 | 2021 |
Uniquely solvable and energy stable decoupled numerical schemes for the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq system W Chen, D Han, X Wang, Y Zhang Journal of Scientific Computing 85, 1-28, 2020 | 15 | 2020 |
Boundary layers for the 3D primitive equations in a cube: the zero-mode M Hamouda, D Han, CY Jung, R Temam Journal of Applied Analysis and Computation 8 (3), 873-889, 2018 | 15 | 2018 |