Fast nonparametric classification based on data depth T Lange, K Mosler, P Mozharovskyi Statistical Papers 55, 49-69, 2014 | 143 | 2014 |
Nonparametric frontier analysis using Stata O Badunenko, P Mozharovskyi The Stata Journal 16 (3), 550-589, 2016 | 111 | 2016 |
Flexible and context-specific AI explainability: a multidisciplinary approach V Beaudouin, I Bloch, D Bounie, S Clémençon, F d'Alché-Buc, J Eagan, ... arXiv preprint arXiv:2003.07703, 2020 | 98 | 2020 |
Exact computation of the halfspace depth R Dyckerhoff, P Mozharovskyi Computational Statistics & Data Analysis 98, 19-30, 2016 | 93 | 2016 |
Depth and depth-based classification with R package ddalpha O Pokotylo, P Mozharovskyi, R Dyckerhoff Journal of Statistical Software 91, 1-46, 2019 | 81 | 2019 |
Functional isolation forest G Staerman, P Mozharovskyi, S Clémençon, F d’Alché-Buc Asian Conference on Machine Learning, 332-347, 2019 | 77 | 2019 |
Choosing among notions of multivariate depth statistics K Mosler, P Mozharovskyi Statistical Science 37 (3), 348-368, 2022 | 62 | 2022 |
Fast DD-classification of functional data K Mosler, P Mozharovskyi Statistical Papers 58, 1055-1089, 2017 | 47 | 2017 |
Youthful and age‐related matreotypes predict drugs promoting longevity C Statzer, E Jongsma, SX Liu, A Dakhovnik, F Wandrey, P Mozharovskyi, ... Aging Cell 20 (9), e13441, 2021 | 43 | 2021 |
A framework to learn with interpretation J Parekh, P Mozharovskyi, F d'Alché-Buc Advances in Neural Information Processing Systems 34, 24273-24285, 2021 | 42 | 2021 |
Fast Computation of Tukey Trimmed Regions and Median in Dimension p > 2 X Liu, K Mosler, P Mozharovskyi Journal of Computational and Graphical Statistics 28 (3), 682-697, 2019 | 42 | 2019 |
When ot meets mom: Robust estimation of wasserstein distance G Staerman, P Laforgue, P Mozharovskyi, F d’Alché-Buc International Conference on Artificial Intelligence and Statistics, 136-144, 2021 | 34 | 2021 |
A pseudo-metric between probability distributions based on depth-trimmed regions G Staerman, P Mozharovskyi, P Colombo, S Clémençon, F d'Alché-Buc arXiv preprint arXiv:2103.12711, 2021 | 33 | 2021 |
Classifying real-world data with the -procedure P Mozharovskyi, K Mosler, T Lange Advances in Data Analysis and Classification 9, 287-314, 2015 | 29 | 2015 |
The area of the convex hull of sampled curves: a robust functional statistical depth measure G Staerman, P Mozharovskyi, S Clémen International Conference on Artificial Intelligence and Statistics, 570-579, 2020 | 27 | 2020 |
Depth for curve data and applications PL De Micheaux, P Mozharovskyi, M Vimond Journal of the American Statistical Association 116 (536), 1881-1897, 2021 | 25 | 2021 |
Approximate computation of projection depths R Dyckerhoff, P Mozharovskyi, S Nagy Computational Statistics & Data Analysis 157, 107166, 2021 | 25 | 2021 |
Uniform convergence rates for the approximated halfspace and projection depth S Nagy, R Dyckerhoff, P Mozharovskyi | 24 | 2020 |
Nonparametric imputation by data depth P Mozharovskyi, J Josse, F Husson Journal of the American Statistical Association 115 (529), 241-253, 2020 | 23 | 2020 |
geometry: Mesh generation and surface tessellation JR Roussel, CB Barber, K Habel, R Grasman, RB Gramacy, ... R package version 0.4 4, 2019 | 20 | 2019 |