Stebėti
Edward Kim
Edward Kim
Cohere AI
Patvirtintas el. paštas cohere.com - Pagrindinis puslapis
Pavadinimas
Cituota
Cituota
Metai
Materials synthesis insights from scientific literature via text extraction and machine learning
E Kim, K Huang, A Saunders, A McCallum, G Ceder, E Olivetti
Chemistry of Materials 29 (21), 9436-9444, 2017
4682017
Data-driven materials research enabled by natural language processing and information extraction
EA Olivetti, JM Cole, E Kim, O Kononova, G Ceder, TYJ Han, ...
Applied Physics Reviews 7 (4), 2020
2702020
A machine learning approach to zeolite synthesis enabled by automatic literature data extraction
Z Jensen, E Kim, S Kwon, TZH Gani, Y Román-Leshkov, M Moliner, ...
ACS central science 5 (5), 892-899, 2019
2482019
Machine-learned and codified synthesis parameters of oxide materials
E Kim, K Huang, A Tomala, S Matthews, E Strubell, A Saunders, ...
Scientific data 4 (1), 1-9, 2017
1812017
Virtual screening of inorganic materials synthesis parameters with deep learning
E Kim, K Huang, S Jegelka, E Olivetti
npj Computational Materials 3 (1), 53, 2017
1702017
Inorganic materials synthesis planning with literature-trained neural networks
E Kim, Z Jensen, A van Grootel, K Huang, M Staib, S Mysore, HS Chang, ...
Journal of chemical information and modeling 60 (3), 1194-1201, 2020
1372020
The materials science procedural text corpus: Annotating materials synthesis procedures with shallow semantic structures
S Mysore, Z Jensen, E Kim, K Huang, HS Chang, E Strubell, J Flanigan, ...
arXiv preprint arXiv:1905.06939, 2019
1292019
Distilling a materials synthesis ontology
E Kim, K Huang, O Kononova, G Ceder, E Olivetti
Matter 1 (1), 8-12, 2019
472019
Automatically extracting action graphs from materials science synthesis procedures
S Mysore, E Kim, E Strubell, A Liu, HS Chang, S Kompella, K Huang, ...
arXiv preprint arXiv:1711.06872, 2017
462017
Machine-learned metrics for predicting the likelihood of success in materials discovery
Y Kim, E Kim, E Antono, B Meredig, J Ling
arXiv preprint arXiv:1911.11201, 2019
372019
Elo uncovered: Robustness and best practices in language model evaluation
M Boubdir, E Kim, B Ermis, S Hooker, M Fadaee
arXiv preprint arXiv:2311.17295, 2023
302023
Using machine learning to explore formulations recipes with new ingredients
ML Hutchinson, ES Kim, RM Latture, SP Paradiso, JB Ling
US Patent 10,984,145, 2021
142021
Fabrication and characterization of thin film nickel hydroxide electrodes for micropower applications
H Falahati, E Kim, DPJ Barz
ACS Applied Materials & Interfaces 7 (23), 12797-12808, 2015
102015
Which prompts make the difference? Data prioritization for efficient human LLM evaluation
M Boubdir, E Kim, B Ermis, M Fadaee, S Hooker
arXiv preprint arXiv:2310.14424, 2023
72023
Design space visualization for guiding investments in biodegradable and sustainably sourced materials
JS Peerless, E Sevgen, SD Edkins, J Koeller, E Kim, Y Kim, A Garg, ...
MRS Communications, 1-7, 2020
72020
Toward Predictive Chemical Deformulation Enabled by Deep Generative Neural Networks
E Sevgen, E Kim, B Folie, V Rivera, J Koeller, E Rosenthal, A Jacobs, ...
Industrial & Engineering Chemistry Research 60 (39), 14176-14184, 2021
62021
Germanene-like defects in amorphous germanium revealed by three-dimensional visualization of high-resolution pair-distribution functions
B Tomberli, A Rahemtulla, E Kim, S Roorda, S Kycia
Physical Review B 92 (6), 064204, 2015
52015
Multiple scattering Debye-Waller factors for arsenate
E Kim, N Chen, Z Arthur, J Warner, GP Demopoulos, JW Rowson, ...
Journal of Physics: Conference Series 430 (1), 012086, 2013
52013
Aya expanse: Combining research breakthroughs for a new multilingual frontier
J Dang, S Singh, D D'souza, A Ahmadian, A Salamanca, M Smith, ...
arXiv preprint arXiv:2412.04261, 2024
42024
XAFS study of arsenical nickel hydroxide
N Chen, E Kim, Z Arthur, R Daenzer, J Warner, GP Demopoulos, Y Joly, ...
Journal of Physics: Conference Series 430 (1), 012092, 2013
42013
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20