Stebėti
Liu Yang (杨柳)
Liu Yang (杨柳)
Ph.D. of HKUST
Patvirtintas el. paštas cse.ust.hk
Pavadinimas
Cituota
Cituota
Metai
Federated recommendation systems
L Yang, B Tan, VW Zheng, K Chen, Q Yang
Federated Learning: Privacy and Incentive, 225-239, 2020
2272020
On neural networks and learning systems for business computing
Y Li, W Jiang, L Yang, T Wu
Neurocomputing 275, 1150-1159, 2018
982018
Application of interpretable machine learning models for the intelligent decision
Y Li, L Yang, B Yang, N Wang, T Wu
Neurocomputing 333, 273-283, 2019
712019
Practical lossless federated singular vector decomposition over billion-scale data
D Chai, L Wang, J Zhang, L Yang, S Cai, K Chen, Q Yang
Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and …, 2022
362022
A survey on vertical federated learning: From a layered perspective
L Yang, D Chai, J Zhang, Y Jin, L Wang, H Liu, H Tian, Q Xu, K Chen
arXiv preprint arXiv:2304.01829, 2023
312023
Improving availability of vertical federated learning: Relaxing inference on non-overlapping data
Z Ren, L Yang, K Chen
ACM Transactions on Intelligent Systems and Technology (TIST) 13 (4), 1-20, 2022
252022
Exploring clustering of bandits for online recommendation system
L Yang, B Liu, L Lin, F Xia, K Chen, Q Yang
Proceedings of the 14th ACM Conference on Recommender Systems, 120-129, 2020
252020
{FLASH}: Towards a high-performance hardware acceleration architecture for cross-silo federated learning
J Zhang, X Cheng, W Wang, L Yang, J Hu, K Chen
20th USENIX Symposium on Networked Systems Design and Implementation (NSDI …, 2023
242023
Practical and secure federated recommendation with personalized mask
L Yang, J Zhang, D Chai, L Wang, K Guo, K Chen, Q Yang
International Workshop on Trustworthy Federated Learning, 33-45, 2022
192022
Addressing network bottlenecks with divide-and-shuffle synchronization for distributed dnn training
W Wang, C Zhang, L Yang, K Chen, K Tan
IEEE INFOCOM 2022-IEEE Conference on Computer Communications, 320-329, 2022
18*2022
Fedeval: A holistic evaluation framework for federated learning
D Chai, L Wang, L Yang, J Zhang, K Chen, Q Yang
arXiv preprint arXiv:2011.09655, 2020
182020
Sok: Fully homomorphic encryption accelerators
J Zhang, X Cheng, L Yang, J Hu, X Liu, K Chen
ACM Computing Surveys 56 (12), 1-32, 2024
162024
A survey for federated learning evaluations: Goals and measures
D Chai, L Wang, L Yang, J Zhang, K Chen, Q Yang
IEEE Transactions on Knowledge and Data Engineering, 2024
152024
Secure forward aggregation for vertical federated neural networks
S Cai, D Chai, L Yang, J Zhang, Y Jin, L Wang, K Guo, K Chen
International Workshop on Trustworthy Federated Learning, 115-129, 2022
122022
Federated meta embedding concept stock recommendation
Z Peng, Y Yang, L Yang, K Chen
IEEE Transactions on Big Data, 2022
42022
Efficient decentralized federated singular vector decomposition
D Chai, J Zhang, L Yang, Y Jin, L Wang, K Chen, Q Yang
2024 USENIX Annual Technical Conference (USENIX ATC 24), 1029-1047, 2024
32024
VERTICES: Efficient Two-Party Vertical Federated Linear Model with TTP-aided Secret Sharing
M Fan, Y Jin, L Yang, Z Ren, K Chen
arXiv preprint arXiv:2306.16139, 2023
22023
DH-RAG: A Dynamic Historical Context-Powered Retrieval-Augmented Generation Method for Multi-Turn Dialogue
F Zhang, D Zhu, J Ming, Y Jin, D Chai, L Yang, H Tian, Z Fan, K Chen
arXiv preprint arXiv:2502.13847, 2025
2025
High-Performance Hardware Acceleration Architecture for Cross-Silo Federated Learning
J Zhang, X Cheng, L Yang, J Hu, H Tian, K Chen
IEEE Transactions on Parallel and Distributed Systems, 2024
2024
PackVFL: Efficient HE Packing for Vertical Federated Learning
L Yang, S Cai, D Chai, J Zhang, H Tian, Y Jin, K Guo, K Chen, Q Yang
arXiv preprint arXiv:2405.00482, 2024
2024
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20