Stebėti
Wei Huang
Wei Huang
Research Scientist, RIKEN AIP
Patvirtintas el. paštas riken.jp - Pagrindinis puslapis
Pavadinimas
Cituota
Cituota
Metai
Single-pass contrastive learning can work for both homophilic and heterophilic graph
H Wang, J Zhang, Q Zhu, W Huang*, K Kawaguchi, X Xiao
TMLR 2023, 2022
83*2022
On the neural tangent kernel of deep networks with orthogonal initialization
W Huang, W Du, RY Da Xu
IJCAI 2021, 2020
412020
Understanding and improving feature learning for out-of-distribution generalization
Y Chen, W Huang, K Zhou, Y Bian, B Han, J Cheng
NeurIPS 2023 36, 68221-68275, 2023
402023
Deep Active Learning by Leveraging Training Dynamics
H Wang, W Huang, A Margenot, H Tong, J He
NeurIPS 2022, 2021
372021
Auto-scaling Vision Transformers without Training
W Chen, W Huang, X Du, X Song, Z Wang, D Zhou
ICLR 2022, 2022
342022
Towards Deepening Graph Neural Networks: A GNTK-based Optimization Perspective
W Huang, Y Li, W Du, RY Da Xu, J Yin, L Chen, M Zhang
ICLR 2022, 2021
342021
Earthfarsser: Versatile spatio-temporal dynamical systems modeling in one model
H Wu, Y Liang, W Xiong, Z Zhou, W Huang, S Wang, K Wang
AAAI 2024, 2024
302024
On the Equivalence between Neural Network and Support Vector Machine
Y Chen, W Huang, LM Nguyen, TW Weng
NeurIPS 2021, 2021
302021
Critical percolation clusters in seven dimensions and on a complete graph
W Huang, P Hou, J Wang, RM Ziff, Y Deng
Physical Review E 97 (2), 022107, 2018
272018
Pruning graph neural networks by evaluating edge properties
L Wang, W Huang, M Zhang, S Pan, X Chang, SW Su
Knowledge-Based Systems 256, 109847, 2022
192022
Adaptive multi-GPU exchange Monte Carlo for the 3D random field Ising model
CA Navarro, W Huang, Y Deng
Computer Physics Communications 205, 48-60, 2016
172016
Global and local prompts cooperation via optimal transport for federated learning
H Li, W Huang, J Wang, Y Shi
CVPR 2024, 12151-12161, 2024
152024
Graph Lottery Ticket Automated
G Zhang, K Wang, W Huang, Y Yue, Y Wang, R Zimmermann, A Zhou, ...
ICLR 2024, 2023
152023
Graph Neural Networks Provably Benefit from Structural Information: A Feature Learning Perspective
W Huang, Y Cao, H Wang, X Cao, T Suzuki
ICML 2023 HiLD Workshop (Oral), 2023
142023
Understanding convergence and generalization in federated learning through feature learning theory
W Huang, Y Shi, Z Cai, T Suzuki
The Twelfth International Conference on Learning Representations, 2023
142023
Analyzing Deep PAC-Bayesian Learning with Neural Tangent Kernel: Convergence, Analytic Generalization Bound, and Efficient Hyperparameter Selection
W Huang, C Liu, Y Chen, RY Da Xu, M Zhang, TW Weng
Transactions on Machine Learning Research, 2023
12*2023
Implicit bias of deep linear networks in the large learning rate phase
W Huang, W Du, RY Da Xu, C Liu
arXiv preprint arXiv:2011.12547, 2020
11*2020
SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining
A Han, J Li, W Huang, M Hong, A Takeda, P Jawanpuria, B Mishra
NeurIPS 2024, 2024
102024
Deep Architecture Connectivity Matters for Its Convergence: A Fine-Grained Analysis
W Chen, W Huang, X Gong, B Hanin, Z Wang
NeurIPS 2022, 2022
102022
The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs
K Wang, G Zhang, X Zhang, J Fang, X Wu, G Li, S Pan, W Huang*, ...
KDD 2024, 2024
92024
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20