Stebėti
David Wipf
David Wipf
Principal Research Scientist, Amazon Web Services
Patvirtintas el. paštas amazon.com - Pagrindinis puslapis
Pavadinimas
Cituota
Cituota
Metai
Sparse Bayesian learning for basis selection
DP Wipf, BD Rao
IEEE Transactions on Signal processing 52 (8), 2153-2164, 2004
17132004
An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
DP Wipf, BD Rao
IEEE Transactions on Signal Processing 55 (7), 3704-3716, 2007
10112007
Iterative ReweightedandMethods for Finding Sparse Solutions
D Wipf, S Nagarajan
IEEE Journal of Selected Topics in Signal Processing 4 (2), 317-329, 2010
6042010
Diagnosing and enhancing VAE models
B Dai, D Wipf
arXiv preprint arXiv:1903.05789, 2019
4842019
A new view of automatic relevance determination
D Wipf, S Nagarajan
Advances in neural information processing systems 20, 2007
4732007
A unified Bayesian framework for MEG/EEG source imaging
D Wipf, S Nagarajan
NeuroImage 44 (3), 947-966, 2009
4142009
Lane change intent analysis using robust operators and sparse bayesian learning
JC McCall, DP Wipf, MM Trivedi, BD Rao
IEEE Transactions on Intelligent Transportation Systems 8 (3), 431-440, 2007
3832007
A generic deep architecture for single image reflection removal and image smoothing
Q Fan, J Yang, G Hua, B Chen, D Wipf
Proceedings of the IEEE International Conference on Computer Vision, 3238-3247, 2017
3712017
Latent variable Bayesian models for promoting sparsity
DP Wipf, BD Rao, S Nagarajan
IEEE Transactions on Information Theory 57 (9), 6236-6255, 2011
3422011
From canonical correlation analysis to self-supervised graph neural networks
H Zhang, Q Wu, J Yan, D Wipf, PS Yu
Advances in Neural Information Processing Systems 34, 76-89, 2021
2642021
A practical transfer learning algorithm for face verification
X Cao, D Wipf, F Wen, G Duan, J Sun
Proceedings of the IEEE international conference on computer vision, 3208-3215, 2013
2642013
NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification
Q Wu, W Zhao, Z Li, D Wipf, J Yan
Advances in Neural Information Processing Systems, 2022
2582022
Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG
DP Wipf, JP Owen, HT Attias, K Sekihara, SS Nagarajan
NeuroImage 49 (1), 641-655, 2010
2552010
Variational EM algorithms for non-Gaussian latent variable models
J Palmer, K Kreutz-Delgado, B Rao, D Wipf
Advances in neural information processing systems 18, 2005
2442005
Handling distribution shifts on graphs: An invariance perspective
Q Wu, H Zhang, J Yan, D Wipf
International Conference on Learning Representations, 2022
2232022
Unsupervised extraction of video highlights via robust recurrent auto-encoders
H Yang, B Wang, S Lin, D Wipf, M Guo, B Guo
Proceedings of the IEEE international conference on computer vision, 4633-4641, 2015
2192015
Multi-image blind deblurring using a coupled adaptive sparse prior
H Zhang, D Wipf, Y Zhang
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2013
2062013
Compressing neural networks using the variational information bottleneck
B Dai, C Zhu, B Guo, D Wipf
International Conference on Machine Learning, 1135-1144, 2018
2032018
Robust photometric stereo using sparse regression
S Ikehata, D Wipf, Y Matsushita, K Aizawa
2012 IEEE Conference on Computer Vision and Pattern Recognition, 318-325, 2012
2032012
Single image reflection removal exploiting misaligned training data and network enhancements
K Wei, J Yang, Y Fu, D Wipf, H Huang
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1962019
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20