Stebėti
Kenneth Bogert
Kenneth Bogert
Associate Professor of Computer Science, University of North Carolina Asheville
Patvirtintas el. paštas unca.edu
Pavadinimas
Cituota
Cituota
Metai
Expectation-maximization for inverse reinforcement learning with hidden data
K Bogert, JFS Lin, P Doshi, D Kulic
Proceedings of the 2016 International Conference on Autonomous Agents …, 2016
452016
Multi-robot inverse reinforcement learning under occlusion with interactions
K Bogert, P Doshi
Proceedings of the 2014 international conference on Autonomous agents and …, 2014
432014
Advancing virtual patient simulations through design research and interPLAY: part I: design and development
A Hirumi, A Kleinsmith, K Johnsen, S Kubovec, M Eakins, K Bogert, ...
Educational Technology Research and Development 64, 763-785, 2016
372016
Multi-robot inverse reinforcement learning under occlusion with estimation of state transitions
K Bogert, P Doshi
Artificial Intelligence 263, 46-73, 2018
252018
Toward Estimating Others’ Transition Models Under Occlusion for Multi-Robot IRL
K Bogert, P Doshi
IJCAI, 1867-1873, 2015
202015
Advancing virtual patient simulations through design research and interPLAY: part II—integration and field test
A Hirumi, T Johnson, RJ Reyes, B Lok, K Johnsen, DJ Rivera-Gutierrez, ...
Educational technology research and development 64, 1301-1335, 2016
192016
(Abstract) Multi-Robot Inverse Reinforcement Learning Under Occlusion with State Transition Estimation
K Bogert, P Doshi
AAMAS, 2015
13*2015
Scaling expectation-maximization for inverse reinforcement learning to multiple robots under occlusion
K Bogert, P Doshi
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent …, 2017
122017
Development and Use of an Interactive Computerized Dog Model to Evaluate Cranial Nerve Knowledge in Veterinary Students
K Bogert, S Platt, A Haley, M Kent, G Edwards, H Dookwah, K Johnsen
Journal of veterinary medical education 43 (1), 26-32, 2016
112016
Advancing virtual patient simulations and experiential learning with InterPLAY: Examining how theory informs design and design informs theory
A Hirumi, K Johnson, A Kleinsmith, R Reyes, D Rivera-Gutierrez, ...
Journal of Applied Instructional Design 6 (1), 49-65, 2017
62017
A hierarchical bayesian process for inverse rl in partially-controlled environments
K Bogert, P Doshi
AAMAS Conference proceedings, 2022
52022
Gaining perspective with google earth virtual reality in an introduction-level physical geology course
BD McNamee, K Bogert
Proceedings of the GSA Annual Meeting, Indianapolis, IN, USA, 4-7, 2018
52018
Inverse reinforcement learning for robotic applications: hidden variables, multiple experts and unknown dynamics
KD Bogert
University of Georgia, 2016
32016
Poster: Evolution and usability of ubiquitous immersive 3D interfaces
A Basu, K Johnsen, K Bogert
2013 IEEE Symposium on 3D User Interfaces (3DUI), 131-132, 2013
32013
Aerial Robotic Simulations for Evaluation of Multi-Agent Planning in GaTAC.
KD Bogert, S Solaimanpour, P Doshi
AAMAS, 1919-1920, 2015
22015
Immersive virtual reality on-the-go
A Basu, K Johnsen, K Bogert, P Wins
Virtual Reality (VR), 2013 IEEE, 193-194, 2013
22013
X-lab: XML-based laboratory exercises for CS1
R Bruce, JD Brock, K Bogert
Proceedings of the 42nd annual ACM Southeast Conference, 434-435, 2004
22004
IRL with Partial Observations using the Principle of Uncertain Maximum Entropy
K Bogert, Y Gui, P Doshi
arXiv preprint arXiv:2208.06988, 2022
12022
Notes on Generalizing the Maximum Entropy Principle to Uncertain Data
K Bogert
arXiv preprint arXiv:2109.04530, 2021
12021
The Principle of Uncertain Maximum Entropy
K Bogert, M Kothe
arXiv preprint arXiv:2305.09868, 2023
2023
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20