Stebėti
Mike Marsh
Mike Marsh
Math2Market
Patvirtintas el. paštas marshimaging.com - Pagrindinis puslapis
Pavadinimas
Cituota
Cituota
Metai
Digital rock physics benchmarks—Part I: Imaging and segmentation
H Andrä, N Combaret, J Dvorkin, E Glatt, J Han, M Kabel, Y Keehm, ...
Computers & Geosciences 50, 25-32, 2013
8052013
Digital rock physics benchmarks—Part II: Computing effective properties
H Andrä, N Combaret, J Dvorkin, E Glatt, J Han, M Kabel, Y Keehm, ...
Computers & Geosciences 50, 33-43, 2013
6862013
Structural clusters of evolutionary trace residues are statistically significant and common in proteins
S Madabushi, H Yao, M Marsh, DM Kristensen, A Philippi, ME Sowa, ...
Journal of molecular biology 316 (1), 139-154, 2002
2622002
Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning
A Badran, D Marshall, Z Legault, R Makovetsky, B Provencher, N Piché, ...
Journal of Materials Science 55, 16273-16289, 2020
872020
Application of deep learning convolutional neural networks for internal tablet defect detection: high accuracy, throughput, and adaptability
X Ma, N Kittikunakorn, B Sorman, H Xi, A Chen, M Marsh, A Mongeau, ...
Journal of Pharmaceutical Sciences 109 (4), 1547-1557, 2020
712020
Dragonfly as a platform for easy image-based deep learning applications
R Makovetsky, N Piche, M Marsh
Microscopy and microanalysis 24 (S1), 532-533, 2018
652018
X-ray CT and laboratory measurements on glacial till subsoil cores: assessment of inherent and compaction-affected soil structure characteristics
M Lamandé, D Wildenschild, FE Berisso, A Garbout, M Marsh, P Moldrup, ...
Soil Science 178 (7), 359-368, 2013
482013
Steps toward automated deprocessing of integrated circuits
EL Principe, N Asadizanjani, D Forte, M Tehranipoor, R Chivas, ...
International Symposium for Testing and Failure Analysis 81504, 285-298, 2017
432017
Deep learning-based segmentation of cryo-electron tomograms
JE Heebner, C Purnell, RK Hylton, M Marsh, MA Grillo, MT Swulius
J Vis Exp 189, e64435, 2022
312022
Processing of micro-CT images of granodiorite rock samples using convolutional neural networks (CNN), Part I: Super-resolution enhancement using a 3D CNN
A Roslin, M Marsh, N Piché, B Provencher, TR Mitchell, IA Onederra, ...
Minerals Engineering 188, 107748, 2022
232022
Correlative X-ray and electron microscopy for multi-scale characterization of heterogeneous shale reservoir pore systems
J Goral, I Miskovic, J Gelb, M Marsh
172016
Poromechanics investigation at pore-scale using digital rock physics laboratory
S Zhang, N Saxena, P Barthelemy, M Marsh, G Mavko, T Mukerji
Proc., The Proceedings of 2011 COMSOL Conference in Stuttgart, 2011
172011
Volumetric reconstruction of a human retinal pigment epithelial cell reveals specialized membranes and polarized distribution of organelles
M Lindell, D Kar, A Sedova, YJ Kim, OS Packer, U Schmidt-Erfurth, ...
Investigative Ophthalmology & Visual Science 64 (15), 35-35, 2023
152023
Deep learning convolutional neural networks for pharmaceutical tablet defect detection
X Ma, N Kittikunakorn, B Sorman, H Xi, A Chen, M Marsh, A Mongeau, ...
Microscopy and Microanalysis 26 (S2), 1606-1609, 2020
152020
Simplifying and streamlining large-scale materials image processing with wizard-driven and scalable deep learning
B Provencher, N Piché, M Marsh
Microscopy and Microanalysis 25 (S2), 402-403, 2019
132019
Dragonfly SegmentationTrainer-a general and user-friendly machine learning image segmentation solution
N Piche, I Bouchard, M Marsh
Microscopy and Microanalysis 23 (S1), 132-133, 2017
102017
Processing of micro-CT images of granodiorite rock samples using convolutional neural networks (CNN), Part II: Semantic segmentation using a 2.5 D CNN
A Roslin, M Marsh, B Provencher, TR Mitchell, IA Onederra, CR Leonardi
Minerals Engineering 195, 108027, 2023
82023
Forget about cleaning up your micrographs: deep learning segmentation is robust to image artifacts
P Dong, B Provencher, N Basim, N Piché, M Marsh
Microscopy and Microanalysis 26 (S2), 1468-1469, 2020
82020
Hyperparameter tuning for deep learning semantic image segmentation of micro computed tomography scanned fiber-reinforced composites
B Provencher, A Badran, J Kroll, M Marsh
Tomography of Materials and Structures 5, 100032, 2024
62024
Deep learning-based segmentation of high-resolution computed tomography image data outperforms commonly used automatic bone segmentation methods
DM Patton, EN Henning, RW Goulet, SK Carroll, EMR Bigelow, ...
bioRxiv, 2021.07. 27.453890, 2021
52021
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20