Stebėti
Mohanad Sarhan
Pavadinimas
Cituota
Cituota
Metai
NetFlow Datasets for Machine Learning-Based Network Intrusion Detection Systems
M Sarhan, S Layeghy, N Moustafa, M Portmann
Big Data Technologies and Applications: 10th EAI International Conference …, 2021
3712021
E-graphsage: A graph neural network based intrusion detection system for iot
WW Lo, S Layeghy, M Sarhan, M Gallagher, M Portmann
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, 1-9, 2022
2922022
Towards a standard feature set for network intrusion detection system datasets
M Sarhan, S Layeghy, M Portmann
Mobile Networks and Applications 27 (1), 357-370, 2022
2922022
Feature extraction for machine learning-based intrusion detection in IoT networks
M Sarhan, S Layeghy, N Moustafa, M Gallagher, M Portmann
Digital Communications and Networks 10 (1), 205-216, 2024
1282024
Cyber threat intelligence sharing scheme based on federated learning for network intrusion detection
M Sarhan, S Layeghy, N Moustafa, M Portmann
Journal of Network and Systems Management 31 (1), 3, 2023
952023
Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-based Network Intrusion Detection
M Sarhan, S Layeghy, M Portmann
arXiv preprint arXiv:2104.07183, 2021
882021
HBFL: A hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection
M Sarhan, WW Lo, S Layeghy, M Portmann
Computers and Electrical Engineering 103, 108379, 2022
682022
Feature Analysis for Machine Learning-based IoT Intrusion Detection
M Sarhan, S Layeghy, M Portmann
arXiv preprint arXiv:2108.12732, 2021
642021
From zero-shot machine learning to zero-day attack detection
M Sarhan, S Layeghy, M Gallagher, M Portmann
International Journal of Information Security 22 (4), 947-959, 2023
582023
Flowtransformer: A transformer framework for flow-based network intrusion detection systems
LD Manocchio, S Layeghy, WW Lo, GK Kulatilleke, M Sarhan, ...
Expert Systems with Applications 241, 122564, 2024
472024
XG-BoT: An explainable deep graph neural network for botnet detection and forensics
WW Lo, G Kulatilleke, M Sarhan, S Layeghy, M Portmann
Internet of Things 22, 100747, 2023
462023
Inspection-L: A Self-Supervised GNN-Based Money Laundering Detection System for Bitcoin
WW Lo, M Sarhan, S Layeghy, M Portmann
44*
Exploring edge TPU for network intrusion detection in IoT
S Hosseininoorbin, S Layeghy, M Sarhan, R Jurdak, M Portmann
Journal of Parallel and Distributed Computing 179, 104712, 2023
312023
Graph neural network-based android malware classification with jumping knowledge
WW Lo, S Layeghy, M Sarhan, M Gallagher, M Portmann
2022 IEEE Conference on Dependable and Secure Computing (DSC), 1-9, 2022
292022
Feature analysis for ML-based IIoT intrusion detection
M Sarhan, S Layeghy, M Portmann
arXiv e-prints, arXiv: 2108.12732, 2021
172021
Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-based Network Intrusion Detection. arXiv 2021
M Sarhan, S Layeghy, M Portmann
arXiv preprint arXiv:2104.07183, 2022
92022
DOC-NAD: A hybrid deep one-class classifier for network anomaly detection
M Sarhan, G Kulatilleke, WW Lo, S Layeghy, M Portmann
2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet …, 2023
52023
Towards a standard feature set of NIDS datasets. CoRR, abs/2101.11315
M Sarhan, S Layeghy, N Moustafa, M Portmann
arXiv preprint arXiv:2101.11315, 2021
32021
Nf-uq-nids-v2
M Sarhan, S Layeghy, M Portmann
The University of Queensland, 2023
22023
The detection of network cyber attacks using machine learning
M Sarhan
12023
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–20