Stebėti
Simkó Attila
Simkó Attila
Patvirtintas el. paštas umu.se
Pavadinimas
Cituota
Cituota
Metai
A generalized network for MRI intensity normalization
A Simkó, T Löfstedt, A Garpebring, T Nyholm, J Jonsson
arXiv preprint arXiv:1909.05484, 2019
142019
MRI bias field correction with an implicitly trained CNN
A Simkó, T Löfstedt, A Garpebring, T Nyholm, J Jonsson
International Conference on Medical Imaging with Deep Learning, 1125-1138, 2022
122022
Reproducibility of the Methods in Medical Imaging with Deep Learning.
A Simkó, A Garpebring, J Jonsson, T Nyholm, T Löfstedt
Medical Imaging with Deep Learning, 95-106, 2024
102024
Towards MR contrast independent synthetic CT generation
A Simkó, M Bylund, G Jönsson, T Löfstedt, A Garpebring, T Nyholm, ...
Zeitschrift für Medizinische Physik 34 (2), 270-277, 2024
32024
End-to-End Cascaded U-Nets with a Localization Network for Kidney Tumor Segmentation
MH Vu, G Grimbergen, A Simkó, T Nyholm, T Löfstedt
arXiv preprint arXiv:1910.07521, 2019
32019
Comparative testing of dark matter models with 15 HSB and 15 LSB galaxies
E Kun, Z Keresztes, A Simkó, G Szűcs, LÁ Gergely
Astronomy & Astrophysics 608, A42, 2017
32017
ProstateZones–Segmentations of the prostatic zones and urethra for the PROSTATEx dataset
W Holmlund, A Simkó, K Söderkvist, P Palásti, S Tótin, K Kalmár, ...
Scientific Data 11 (1), 1097, 2024
22024
Changing the contrast of magnetic resonance imaging signals using deep learning
AT Simko, T Löfstedt, A Garpebring, M Bylund, T Nyholm, J Jonsson
Medical Imaging with Deep Learning, 713-727, 2021
22021
Localization Network and End-to-End Cascaded U-Nets for Kidney Tumor Segmentation
MH Vu, G Grimbergen, A Simkó, T Nyholm, T Löfstedt
Univ. Minn. Libr 10 (548719.073), 2019
22019
From Promise to Practice: A Study of Common Pitfalls Behind the Generalization Gap in Machine Learning
S Ghanbari Azar, L Tronchin, A Simkó, T Nyholm, T Löfstedt
Transactions on Machine Learning Research, 2025
2025
Ultra-fast, one-click radiotherapy treatment planning outside a treatment planning system
G Heilemann, L Zimmermann, T Nyholm, A Simkó, J Widder, G Goldner, ...
Physics and Imaging in Radiation Oncology 33, 100724, 2025
2025
663: Reproducibility guideline for deep learning research in medical imaging
A Simkó, A Garpebring, J Jonsson, T Nyholm, T Löfstedt
Radiotherapy and Oncology 194, S4424-S4425, 2024
2024
2191: Automatic segmentation of the prostate, urethra, and prostatic zones
W Holmlund, A Simkó, K Söderkvist, P Palásti, S Tótin, K Kalmár, ...
Radiotherapy and Oncology 194, S3095-S3099, 2024
2024
Improving MR image quality with a multi-task model, using convolutional losses
A Simkó, S Ruiter, T Löfstedt, A Garpebring, T Nyholm, M Bylund, ...
BMC Medical Imaging 23 (1), 1-14, 2023
2023
PO-1698 Towards MR contrast independent synthetic CT generation.
A Simko, M Bylund, G Jönsson, T Löfstedt, A Garpebring, T Nyholm, ...
Radiotherapy and Oncology 182, S1409-S1410, 2023
2023
Contributions to deep learning for imaging in radiotherapy
A Simkó
Umeå University, 2023
2023
From Promise to Practice: A Study of Common Pitfalls Behind the Generalization Gap in Machine Learning
SG Azar, L Tronchin, A Simkó, T Nyholm, T Löfstedt
Transactions on Machine Learning Research, 0
Sistema negali atlikti operacijos. Bandykite vėliau dar kartą.
Straipsniai 1–17