Volgen
Koushik Nagasubramanian
Koushik Nagasubramanian
Geverifieerd e-mailadres voor bayer.com
Titel
Geciteerd door
Geciteerd door
Jaar
Plant disease identification using explainable 3D deep learning on hyperspectral images
K Nagasubramanian, S Jones, AK Singh, S Sarkar, A Singh, ...
Plant methods 15, 1-10, 2019
406*2019
Ntire 2020 challenge on spectral reconstruction from an rgb image
B Arad, R Timofte, O Ben-Shahar, YT Lin, GD Finlayson
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
2662020
Challenges and opportunities in machine-augmented plant stress phenotyping
A Singh, S Jones, B Ganapathysubramanian, S Sarkar, D Mueller, ...
Trends in Plant Science 26 (1), 53-69, 2021
1912021
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
K Nagasubramanian, S Jones, S Sarkar, AK Singh, A Singh, ...
Plant methods 14, 1-13, 2018
1902018
Development of optimized phenomic predictors for efficient plant breeding decisions using phenomic-assisted selection in soybean
K Parmley, K Nagasubramanian, S Sarkar, B Ganapathysubramanian, ...
Plant Phenomics, 2019
892019
Cyber-agricultural systems for crop breeding and sustainable production
S Sarkar, B Ganapathysubramanian, A Singh, F Fotouhi, S Kar, ...
Trends in Plant Science 29 (2), 130-149, 2024
392024
High-throughput phenotyping in soybean
AK Singh, A Singh, S Sarkar, B Ganapathysubramanian, W Schapaugh, ...
High-throughput crop phenotyping, 129-163, 2021
362021
How useful is active learning for image‐based plant phenotyping?
K Nagasubramanian, T Jubery, F Fotouhi Ardakani, SV Mirnezami, ...
The Plant Phenome Journal 4 (1), e20020, 2021
272021
Self‐supervised learning improves classification of agriculturally important insect pests in plants
S Kar, K Nagasubramanian, D Elango, ME Carroll, CA Abel, A Nair, ...
The Plant Phenome Journal 6 (1), e20079, 2023
25*2023
Automated trichome counting in soybean using advanced image‐processing techniques
SV Mirnezami, T Young, T Assefa, S Prichard, K Nagasubramanian, ...
Applications in plant sciences 8 (7), e11375, 2020
242020
Plant phenotyping with limited annotation: Doing more with less
K Nagasubramanian
Iowa State University, 2022
222022
Usefulness of interpretability methods to explain deep learning based plant stress phenotyping
K Nagasubramanian, AK Singh, A Singh, S Sarkar, ...
arXiv preprint arXiv:2007.05729, 2020
222020
PIRM2018 challenge on spectral image super-resolution: methods and results
M Shoeiby, A Robles-Kelly, R Timofte, R Zhou, F Lahoud, S Susstrunk, ...
Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 0-0, 2018
222018
Distributed deep learning for persistent monitoring of agricultural fields
Y Esfandiari, K Nagasubramanian, F Fotouhi, PS Schnable, ...
NeurIPS 2021 AI for Science Workshop, 2021
82021
Exploring the use of 3D point cloud data for improved plant stress rating
S Chiranjeevi, T Young, TZ Jubery, K Nagasubramanian, S Sarkar, ...
AI for Agriculture and Food Systems, 2021
82021
Privacy-preserving deep models for plant stress phenotyping
M Cho, K Nagasubramanian, AK Singh, A Singh, ...
AI for Agriculture and Food Systems, 2022
62022
On load disaggregation using discrete events
NK Thokala, MG Chandra, K Nagasubramanian
2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), 324-329, 2016
62016
Self-supervised maize kernel classification and segmentation for embryo identification
D Dong, K Nagasubramanian, R Wang, UK Frei, TZ Jubery, T Lübberstedt, ...
Frontiers in Plant Science 14, 1108355, 2023
12023
frontiers Research Topics January 2024
J Li, Y Li, J Qiao, L Li, X Wang, J Yao, G Liao, A Das, SD Choudhury, ...
Machine Vision and Machine Learning for Plant Phenotyping and Precision …, 2024
2024
Soybean Root Phenomics
T Tran, K Nagasubramanian, S Sarkar, B Ganapathysubramanian, K Falk, ...
Iowa State University Research and Demonstration Farms Progress Reports 2018 (1), 2019
2019
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20