Volgen
Salvatore Scognamiglio
Salvatore Scognamiglio
Geverifieerd e-mailadres voor uniparthenope.it
Titel
Geciteerd door
Geciteerd door
Jaar
Time-series forecasting of mortality rates using deep learning
F Perla, R Richman, S Scognamiglio, MV Wüthrich
Scandinavian Actuarial Journal 2021 (7), 572-598, 2021
1172021
A deep learning integrated Lee–Carter model
A Nigri, S Levantesi, M Marino, S Scognamiglio, F Perla
Risks 7 (1), 33, 2019
1042019
Calibrating the lee-carter and the poisson lee-carter models via neural networks
S Scognamiglio
ASTIN Bulletin: The Journal of the IAA 52 (2), 519-561, 2022
302022
An investigation of machine learning approaches in the solvency II valuation framework
G Castellani, U Fiore, Z Marino, L Passalacqua, F Perla, S Scognamiglio, ...
Available at SSRN 3303296, 2018
182018
A deep learning integrated Lee-Carter model. Risks, 7 (1), 33
A Nigri, S Levantesi, M Marino, S Scognamiglio, F Perla
162019
Locally-coherent multi-population mortality modelling via neural networks
F Perla, S Scognamiglio
Decisions in Economics and Finance 46 (1), 157-176, 2023
122023
Machine learning techniques in nested stochastic simulations for life insurance
G Castellani, U Fiore, Z Marino, L Passalacqua, F Perla, S Scognamiglio, ...
Applied Stochastic Models in Business and Industry 37 (2), 159-181, 2021
122021
A new dynamic and perspective parsimonious AHP model for improving industrial frameworks
G Fattoruso, S Scognamiglio, A Violi
Mathematics 10 (17), 3138, 2022
102022
l1-Regularization in Portfolio Selection with Machine Learning
S Corsaro, V De Simone, Z Marino, S Scognamiglio
Mathematics 10 (4), 540, 2022
102022
Backtesting stochastic mortality models by prediction interval-based metrics
S Scognamiglio, M Marino
Quality & Quantity 57 (4), 3825-3847, 2023
92023
Robust classification via support vector machines
AV Asimit, I Kyriakou, S Santoni, S Scognamiglio, R Zhu
Risks 10 (8), 154, 2022
82022
Deep learning forecasting for supporting terminal operators in port business development
M Ferretti, U Fiore, F Perla, M Risitano, S Scognamiglio
Future Internet 14 (8), 221, 2022
82022
Tuning a deep learning network for solvency II: Preliminary results
U Fiore, Z Marino, L Passalacqua, F Perla, S Scognamiglio, P Zanetti
Mathematical and Statistical Methods for Actuarial Sciences and Finance: MAF …, 2018
82018
Longevity risk analysis: applications to the Italian regional data
S Scognamiglio
Quantitative Finance and Economics 6 (1), 138-157, 2022
62022
Systemic risk measurement: A quantile long short-term memory network approach
IL Aprea, S Scognamiglio, P Zanetti
Applied Soft Computing 152, 111224, 2024
52024
Accurate and explainable mortality forecasting with the LocalGLMnet
F Perla, R Richman, S Scognamiglio, MV Wüthrich
Scandinavian Actuarial Journal 2024 (7), 739-761, 2024
42024
A multi-population locally-coherent mortality model
S Scognamiglio
Methods and Applications in Fluorescence, 423-428, 2022
32022
Learning fused lasso parameters in portfolio selection via neural networks
S Corsaro, V De Simone, Z Marino, S Scognamiglio
Quality & Quantity 58 (5), 4281-4299, 2024
22024
Multiple yield curve modeling and forecasting using deep learning
R Richman, S Scognamiglio
ASTIN Bulletin: The Journal of the IAA 54 (3), 463-494, 2024
22024
The credibility transformer
R Richman, S Scognamiglio, MV Wüthrich
European Actuarial Journal, 1-35, 2025
12025
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20