Volgen
Francesca Ieva
Francesca Ieva
Associate Professor, MOX - Department of Mathematics, Politecnico di Milano
Geverifieerd e-mailadres voor polimi.it - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Comparing methods for comparing networks
M Tantardini, F Ieva, L Tajoli, C Piccardi
Scientific reports 9 (1), 17557, 2019
2952019
Statistical challenges of administrative and transaction data
DJ Hand
Journal of the Royal Statistical Society Series A: Statistics in Society 181 …, 2018
1852018
Multivariate functional clustering for the morphological analysis of electrocardiograph curves
F Ieva, AM Paganoni, D Pigoli, V Vitelli
Journal of the Royal Statistical Society Series C: Applied Statistics 62 (3 …, 2013
1192013
Multi-state modelling of repeated hospitalisation and death in patients with heart failure: the use of large administrative databases in clinical epidemiology
F Ieva, CH Jackson, LD Sharples
Statistical methods in medical research 26 (3), 1350-1372, 2017
932017
Depth measures for multivariate functional data
F Ieva, AM Paganoni
Communications in Statistics-Theory and Methods 42 (7), 1265-1276, 2013
852013
Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study
P Taroni, AM Paganoni, F Ieva, A Pifferi, G Quarto, F Abbate, E Cassano, ...
Scientific reports 7 (1), 40683, 2017
822017
Methodological issues on the use of administrative data in healthcare research: the case of heart failure hospitalizations in Lombardy region, 2000 to 2012
C Mazzali, AM Paganoni, F Ieva, C Masella, M Maistrello, O Agostoni, ...
BMC Health Services Research 16, 1-10, 2016
802016
Generalized mixed‐effects random forest: A flexible approach to predict university student dropout
M Pellagatti, C Masci, F Ieva, AM Paganoni
Statistical Analysis and Data Mining: The ASA Data Science Journal 14 (3 …, 2021
682021
Statistical medical fraud assessment: exposition to an emerging field
T Ekin, F Ieva, F Ruggeri, R Soyer
International Statistical Review 86 (3), 379-402, 2018
672018
PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival
F Fiz, C Masci, G Costa, M Sollini, A Chiti, F Ieva, G Torzilli, L Viganò
European journal of nuclear medicine and molecular imaging 49 (10), 3387-3400, 2022
552022
A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data
A Martino, A Ghiglietti, F Ieva, AM Paganoni
Statistical Methods & Applications 28, 301-322, 2019
482019
Optical identification of subjects at high risk for developing breast cancer
P Taroni, G Quarto, A Pifferi, F Ieva, AM Paganoni, F Abbate, N Balestreri, ...
Journal of biomedical optics 18 (6), 060507-060507, 2013
462013
Data mining application to healthcare fraud detection: a two-step unsupervised clustering method for outlier detection with administrative databases
MC Massi, F Ieva, E Lettieri
BMC medical informatics and decision making 20, 1-11, 2020
422020
Non-parametric frailty Cox models for hierarchical time-to-event data
F Gasperoni, F Ieva, AM Paganoni, CH Jackson, L Sharples
Biostatistics 21 (3), 531-544, 2020
402020
Multi-state modelling of heart failure care path: a population-based investigation from Italy
F Gasperoni, F Ieva, G Barbati, A Scagnetto, A Iorio, G Sinagra, ...
PloS one 12 (6), e0179176, 2017
402017
Detecting and visualizing outliers in provider profiling via funnel plots and mixed effect models
F Ieva, AM Paganoni
Health care management science 18, 166-172, 2015
392015
Early-predicting dropout of university students: an application of innovative multilevel machine learning and statistical techniques
M Cannistrà, C Masci, F Ieva, T Agasisti, AM Paganoni
Studies in Higher Education 47 (9), 1935-1956, 2022
382022
Multivariate functional clustering for the analysis of ECG curves morphology
F Ieva, A Paganoni, D Pigoli, V Vitelli
352011
Performance assessment using mixed effects models: a case study on coronary patient care
N Grieco, F Ieva, AM Paganoni
IMA Journal of Management Mathematics 23 (2), 117-131, 2012
342012
A deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a REQUITE multi-national cohort
MC Massi, F Gasperoni, F Ieva, AM Paganoni, P Zunino, A Manzoni, ...
Frontiers in oncology 10, 541281, 2020
322020
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20