Volgen
Joel A. Rosenfeld
Joel A. Rosenfeld
Associate Professor, Department of Mathematics and Statistics, University of South Florida
Geverifieerd e-mailadres voor usf.edu - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Reinforcement Learning for Optimal Feedback Control: A Lyapunov-Based Approach
R Kamalapurkar, P Walters, J Rosenfeld, W Dixon
Springer, 2018
176*2018
Verification for Machine Learning, Autonomy, and Neural Networks Survey
W Xiang, P Musau, AA Wild, DM Lopez, N Hamilton, X Yang, J Rosenfeld, ...
arXiv preprint arXiv:1810.01989, 2018
1232018
Efficient model-based reinforcement learning for approximate online optimal control
R Kamalapurkar, JA Rosenfeld, WE Dixon
Automatica 74, 247-258, 2016
1042016
Reachable set estimation and safety verification for piecewise linear systems with neural network controllers
W Xiang, HD Tran, JA Rosenfeld, TT Johnson
2018 Annual American Control Conference (ACC), 1574-1579, 2018
812018
Invariance-Like Results for Nonautonomous Switched Systems
R Kamalapurkar, JA Rosenfeld, A Parikh, AR Teel, WE Dixon
IEEE Transactions on Automatic Control 64 (2), 614-627, 2019
622019
Supporting lemmas for RISE-based control methods
R Kamalapurkar, JA Rosenfeld, J Klotz, RJ Downey, WE Dixon
arXiv preprint arXiv:1306.3432, 2013
532013
Decentralized formation control with connectivity maintenance and collision avoidance under limited and intermittent sensing
TH Cheng, Z Kan, JA Rosenfeld, WE Dixon
2014 American control conference, 3201-3206, 2014
452014
Dynamic mode decomposition for continuous time systems with the Liouville operator
JA Rosenfeld, R Kamalapurkar, LF Gruss, TT Johnson
Journal of Nonlinear Science 32, 1-30, 2022
412022
Approximate Optimal Motion Planning to Avoid Unknown Moving Avoidance Regions
P Deptula, HY Chen, RA Licitra, JA Rosenfeld, WE Dixon
IEEE Transactions on Robotics 36 (2), 414-430, 2019
412019
Approximate Dynamic Programming: Combining Regional and Local State Following Approximations
P Deptula, JA Rosenfeld, R Kamalapurkar, WE Dixon
IEEE transactions on neural networks and learning systems 29 (6), 2154-2166, 2018
332018
The Occupation Kernel Method for Nonlinear System Identification
JA Rosenfeld, B Russo, R Kamalapurkar, TT Johnson
arXiv preprint arXiv:1909.11792, 2019
312019
Occupation Kernels and Densely Defined Liouville Operators for System Identification
JA Rosenfeld, R Kamalapurkar, B Russo, TT Johnson
2019 IEEE 58th Conference on Decision and Control (CDC), 6455-6460, 2019
292019
Approximating the Caputo Fractional Derivative through the Mittag-Leffler Reproducing Kernel Hilbert Space and the Kernelized Adams--Bashforth--Moulton Method
JA Rosenfeld, WE Dixon
SIAM Journal on Numerical Analysis 55 (3), 1201-1217, 2017
292017
The Mittag Leffler reproducing kernel Hilbert spaces of entire and analytic functions
JA Rosenfeld, B Russo, WE Dixon
Journal of Mathematical Analysis and Applications 463 (2), 576-592, 2018
242018
A mesh-free pseudospectral approach to estimating the fractional Laplacian via radial basis functions
JA Rosenfeld, SA Rosenfeld, WE Dixon
Journal of Computational Physics 390, 306-322, 2019
232019
The State Following Approximation Method
JA Rosenfeld, R Kamalapurkar, WE Dixon
IEEE transactions on neural networks and learning systems 30 (6), 1716-1730, 2018
202018
Dynamic Mode Decomposition with Control Liouville Operators
JA Rosenfeld, R Kamalapurkar
IEEE Transactions on Automatic Control, 2024
182024
The gradient descent method from the perspective of fractional calculus
PV Hai, JA Rosenfeld
Mathematical Methods in the Applied Sciences 44 (7), 5520-5547, 2021
152021
The kernel perspective on dynamic mode decomposition
E Gonzalez, M Abudia, M Jury, R Kamalapurkar, JA Rosenfeld
arXiv preprint arXiv:2106.00106, 2021
142021
State following (StaF) kernel functions for function approximation Part II: Adaptive dynamic programming
R Kamalapurkar, JA Rosenfeld, WE Dixon
2015 American Control Conference (ACC), 521-526, 2015
142015
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20