Volgen
Alessandro Rigazzi
Alessandro Rigazzi
Geverifieerd e-mailadres voor usi.ch
Titel
Geciteerd door
Geciteerd door
Jaar
The boundary for quantum advantage in Gaussian boson sampling
JFF Bulmer, BA Bell, RS Chadwick, AE Jones, D Moise, A Rigazzi, ...
Science advances 8 (4), eabl9236, 2022
912022
Using machine learning at scale in numerical simulations with SmartSim: An application to ocean climate modeling
S Partee, M Ellis, A Rigazzi, AE Shao, S Bachman, G Marques, B Robbins
Journal of Computational Science 62, 101707, 2022
762022
Time-dependent visualization of Lagrangian coherent structures by grid advection
F Sadlo, A Rigazzi, R Peikert
Topological Methods in Data Analysis and Visualization: Theory, Algorithms …, 2011
682011
Recombination of artificial neural networks
A Vose, J Balma, A Heye, A Rigazzi, C Siegel, D Moise, B Robbins, ...
arXiv preprint arXiv:1901.03900, 2019
62019
A parallel multigrid method for constrained minimization problems and its application to friction, contact, and obstacle problems
R Krause, A Rigazzi, J Steiner
Computing and Visualization in Science 18, 1-15, 2016
62016
In Situ Framework for Coupling Simulation and Machine Learning with Application to CFD
R Balin, F Simini, C Simpson, A Shao, A Rigazzi, M Ellis, S Becker, ...
arXiv preprint arXiv:2306.12900, 2023
52023
The effects of roughness on the area of contact and on the elastostatic friction
AP Rigazzi
52014
Combining machine learning with computational fluid dynamics using OpenFOAM and SmartSim
T Maric, ME Fadeli, A Rigazzi, A Shao, A Weiner
Meccanica, 1-20, 2024
42024
DC-S3GD: Delay-Compensated Stale-Synchronous SGD for Large-Scale Decentralized Neural Network Training
A Rigazzi
2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS), 62-68, 2019
32019
19th OpenFOAM Workshop-Combining Machine Learning with Computational Fluid Dynamics using OpenFOAM and SmartSim
T Maric, AE Shao, A Rigazzi, M Ellis, EM Fadeli, K Yuan, A Weiner
2024
Efficiently combining Machine Learning with OpenFOAM using SmartSim-Slides
T Maric, A Shao, A Rigazzi, M Ellis, M Fadeli, A Weiner
2023
Advection of sampling grids for efficient computation of trajectory-based quantities
A Rigazzi
ETH, Eidgenössische Technische Hochschule Zürich, Institut für Computational …, 2008
2008
Using Machine Learning at Scale in HPC Simulations with SmartSim
S Partee, M Ellis, A Rigazzi, S Bachman, G Marques, A Shao, B Robbins
Yin, Junqi 84 Zhang, Zhao 45, 69
C Adams, AA Awan, D Barajas-Solano, JK Bassett, D Bhowmik, T Bicer, ...
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–14