Følg
Adam M. Krajewski
Adam M. Krajewski
Research Associate at The Pennsylvania State University
Verifisert e-postadresse på psu.edu - Startside
Tittel
Sitert av
Sitert av
År
Generative deep learning as a tool for inverse design of high-entropy refractory alloys
A Debnath, AM Krajewski, H Sun, S Lin, M Ahn, W Li, S Priya, J Singh, ...
Journal of Materials Informatics 1 (3), 2021
442021
Extensible Structure-Informed Prediction of Formation Energy with improved accuracy and usability employing neural networks
AM Krajewski, JW Siegel, J Xu, ZK Liu
Computational Materials Science 208, 111254, 2022
412022
Correlation analysis of materials properties by machine learning: illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys
X Chong, SL Shang, AM Krajewski, JD Shimanek, W Du, Y Wang, J Feng, ...
Journal of Physics: Condensed Matter 33 (29), 295702, 2021
312021
Thermodynamic properties of the Nd-Bi system via emf measurements, DFT calculations, machine learning, and CALPHAD modeling
S Im, SL Shang, ND Smith, AM Krajewski, T Lichtenstein, H Sun, ...
Acta Materialia 223, 117448, 2022
28*2022
Forming mechanism of equilibrium and non-equilibrium metallurgical phases in dissimilar aluminum/steel (Al–Fe) joints
SL Shang, H Sun, B Pan, Y Wang, AM Krajewski, M Banu, J Li, ZK Liu
Scientific reports 11 (1), 24251, 2021
232021
Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange
ML Evans, J Bergsma, A Merkys, CW Andersen, OB Andersson, D Beltrán, ...
Digital Discovery 3 (8), 1509-1533, 2024
122024
Comparing forward and inverse design paradigms: A case study on refractory high-entropy alloys
A Debnath, L Raman, W Li, AM Krajewski, M Ahn, S Lin, S Shang, ...
Journal of Materials Research 38 (17), 4107-4117, 2023
102023
Efficient generation of grids and traversal graphs in compositional spaces towards exploration and path planning
AM Krajewski, AM Beese, WF Reinhart, ZK Liu
npj Unconventional Computing 1 (1), 12, 2024
4*2024
Efficient structure-informed featurization and property prediction of ordered, dilute, and random atomic structures
AM Krajewski, JW Siegel, ZK Liu
Computational Materials Science 247, 113495, 2024
32024
Design and validation of refractory alloys using machine learning, CALPHAD, and experiments
W Li, L Raman, A Debnath, M Ahn, S Lin, AM Krajewski, S Shang, S Priya, ...
International Journal of Refractory Metals and Hard Materials 121, 106673, 2024
32024
MaterialsMap: A CALPHAD-based tool to design composition pathways through feasibility map for desired dissimilar materials, demonstrated with resistance spot welding joining of …
H Sun, B Pan, Z Yang, AM Krajewski, B Bocklund, SL Shang, J Li, ...
Materialia 36, 102153, 2024
22024
nimCSO: A Nim package for Compositional Space Optimization
K Adam M., A Debnath, WF Reinhart, AM Beese, ZK Liu
Journal of Open Source Software 9 (103), 6731, 2024
1*2024
Efficient Materials Informatics between Rockets and Electrons
AM Krajewski
The Pennsylvania State University, 2024
12024
Data-driven inverse design of MoNbTiVWZr refractory multicomponent alloys: Microstructure and mechanical properties
L Raman, A Debnath, E Furton, S Lin, A Krajewski, S Ghosh, N Liu, M Ahn, ...
Materials Science and Engineering: A 918, 147475, 2024
2024
Systemet kan ikke utføre handlingen. Prøv på nytt senere.
Artikler 1–14