Følg
Paul Hofman
Paul Hofman
Verifisert e-postadresse på ifi.lmu.de
Tittel
Sitert av
Sitert av
År
Quantifying aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual information appropriate measures?
L Wimmer, Y Sale, P Hofman, B Bischl, E Hüllermeier
Uncertainty in artificial intelligence, 2282-2292, 2023
682023
Second-order uncertainty quantification: Variance-based measures
Y Sale, P Hofman, L Wimmer, E Hüllermeier, T Nagler
arXiv preprint arXiv:2401.00276, 2023
82023
Quantifying aleatoric and epistemic uncertainty: A credal approach
P Hofman, Y Sale, E Hüllermeier
ICML 2024 Workshop on Structured Probabilistic Inference {\&} Generative …, 2024
62024
Quantifying aleatoric and epistemic uncertainty with proper scoring rules
P Hofman, Y Sale, E Hüllermeier
arXiv preprint arXiv:2404.12215, 2024
52024
Conformal prediction with partially labeled data
A Javanmardi, Y Sale, P Hofman, E Hüllermeier
Conformal and Probabilistic Prediction with Applications, 251-266, 2023
32023
Using conceptors to overcome catastrophic forgetting in convolutional neural networks
P Hofman
22021
Label-wise aleatoric and epistemic uncertainty quantification
Y Sale, P Hofman, T Löhr, L Wimmer, T Nagler, E Hüllermeier
arXiv preprint arXiv:2406.02354, 2024
12024
Identifying Trends in Feature Attributions During Training of Neural Networks
E Terzieva, M Muschalik, P Hofman, E Hüllermeier
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2023
2023
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning
L Wimmer, Y Sale, P Hofman, B Bischl, E Hüllermeier
Systemet kan ikke utføre handlingen. Prøv på nytt senere.
Artikler 1–9