Følg
Daniele Malitesta
Daniele Malitesta
Postdoc Researcher, CentraleSupélec, Inria, Université Paris-Saclay
Verifisert e-postadresse på centralesupelec.fr - Startside
Tittel
Sitert av
Sitert av
År
Elliot: a Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation
VW Anelli, A Bellogín, A Ferrara, D Malitesta, FA Merra, C Pomo, ...
The 44th International ACM SIGIR Conference on Research and Development in …, 2021
1502021
TAaMR: Targeted Adversarial Attack against Multimedia Recommender Systems
T Di Noia, D Malitesta, FA Merra
the 50th Annual IEEE/IFIP International Conference on Dependable Systems and …, 2020
612020
A Study of Defensive Methods to Protect Visual Recommendation Against Adversarial Manipulation of Images
VW Anelli, Y Deldjoo, T Di Noia, D Malitesta, FA Merra
The 44th International ACM SIGIR Conference on Research and Development in …, 2021
432021
A Study on the Relative Importance of Convolutional Neural Networks in Visually-Aware Recommender Systems
Y Deldjoo, T Di Noia, D Malitesta, FA Merra
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
282021
Leveraging Content-Style Item Representation for Visual Recommendation
Y Deldjoo, T Di Noia, D Malitesta, FA Merra
The 44th European Conference on Information Retrieval (ECIR'22), 2022
202022
V-elliot: Design, evaluate and tune visual recommender systems
VW Anelli, A Bellogín, A Ferrara, D Malitesta, FA Merra, C Pomo, ...
Proceedings of the 15th ACM Conference on Recommender Systems, 768-771, 2021
202021
Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering
VW Anelli, Y Deldjoo, T Di Noia, D Malitesta, V Paparella, C Pomo
The 45th European Conference on Information Retrieval (ECIR'23), 2023
192023
Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis
VW Anelli, D Malitesta, C Pomo, A Bellogin, E Di Sciascio, T Di Noia
The 17th ACM Conference on Recommender Systems (RecSys'23), 2023
152023
Formalizing Multimedia Recommendation through Multimodal Deep Learning
D Malitesta, G Cornacchia, C Pomo, FA Merra, T Di Noia, E Di Sciascio
ACM Transactions on Recommender Systems, 2024
142024
KGTORe: Tailored Recommendations through Knowledge-aware GNN Models
ACM Mancino, A Ferrara, S Bufi, D Malitesta, T Di Noia, E Di Sciascio
The 17th ACM Conference on Recommender Systems (RecSys'23), 2023
132023
Denoise to Protect: A Method to Robustify Visual Recommenders from Adversaries
FA Merra, VW Anelli, T Di Noia, D Malitesta, ACM Mancino
The 46th International ACM SIGIR Conference on Research and Development in …, 2023
132023
Reshaping Graph Recommendation with Edge Graph Collaborative Filtering and Customer Reviews
VW Anelli, Y Deldjoo, T Di Noia, E Di Sciascio, A Ferrara, D Malitesta, ...
Workshop on Deep Learning for Search and Recommendation (CIKM'22), 2022
132022
How Neighborhood Exploration influences Novelty and Diversity in Graph Collaborative Filtering
VW Anelli, Y Deldjoo, T Di Noia, E Di Sciascio, A Ferrara, D Malitesta, ...
2nd Workshop on Multi-Objective Recommender Systems (RecSys'22), 2022
122022
Ducho: A Unified Framework for the Extraction of Multimodal Features in Recommendation
D Malitesta, G Gassi, C Pomo, T Di Noia
The 31st ACM International Conference on Multimedia (MM'23), 2023
92023
Assessing Perceptual and Recommendation Mutation of Adversarially-Poisoned Visual Recommenders (short paper).
VW Anelli, T Di Noia, D Malitesta, FA Merra
DP@ AI* IA 2776, 49-56, 2020
92020
Disentangling the Performance Puzzle of Multimodal-aware Recommender Systems
D Malitesta, G Cornacchia, C Pomo, T Di Noia
2nd Workshop on A Well-Rounded Evaluation of Recommender Systems (KDD'23), 2023
82023
Deep learning-based adaptive image compression system for a real-world scenario
VW Anelli, Y Deldjoo, T Di Noia, D Malitesta
2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), 1-8, 2020
72020
On Popularity Bias of Multimodal-aware Recommender Systems: a Modalities-driven Analysis
D Malitesta, G Cornacchia, C Pomo, T Di Noia
Workshop on Deep Multimodal Learning for Information Retrieval (MM'23), 2023
62023
Ducho 2.0: Towards a More Up-to-Date Unified Framework for the Extraction of Multimodal Features in Recommendation
M Attimonelli, D Danese, D Malitesta, C Pomo, G Gassi, T Di Noia
The 2024 ACM Web Conference, 2024
52024
Dealing with Missing Modalities in Multimodal Recommendation: a Feature Propagation-based Approach
D Malitesta, E Rossi, C Pomo, FD Malliaros, T Di Noia
arXiv preprint arXiv:2403.19841, 2024
52024
Systemet kan ikke utføre handlingen. Prøv på nytt senere.
Artikler 1–20